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FigureSample-level heatmap of layer-wise MoE gate contributions. Left: Gate Weights (7;) show learned layer priorities.
Middle: Actual Contributions (7, x h(¥)) reveal effective semantic utilization. Right: Difference highlights
priority-impact discrepancy. Each row is a video sample; columns are transformer layers (LO, L4, L8, L.12, L16, L20). L8
exhibits dominant contributions while L4 and L16 show minimal activation, confirming mid-level features balance visual

details and abstract concepts better than the deepest layers alone.

6. Dataset Details

We evaluate LinkedOut on MicroLens-50K and MicroLens-
100K [27], the only publicly available micro-video datasets
providing raw video files rather than pre-extracted fea-
tures, making them ideal for evaluating foundation-model-
driven approaches. MicroLens-50K contains 50,000 users,
19,220 videos, and 359,708 interactions, while MicroLens-
100K scales to 100,000 users, 19,738 videos, and 719,405
interactions.  Both datasets span 15,580 fine-grained
hashtag-based category tags (e.g., “#vegan_cooking”, “#ur-
ban_photography”) covering diverse domains including
food, sports, travel, entertainment, education, and lifestyle,
which align well with video foundation models’ world
knowledge.

The datasets exhibit several key characteristics that make
them suitable for evaluating video recommendation sys-
tems. Each video includes rich multimodal content: full-
length video frames (average duration 161 seconds, with
most videos under 400 seconds), audio tracks capturing
speech and background music, textual titles with embed-
ded category tags, cover images, and engagement metadata
(likes, views, timestamps). This multimodal richness en-
ables comprehensive content understanding beyond visual
appearance alone. User-item interactions are timestamped
comment behaviors that naturally encode sequential view-
ing patterns, with most users having 5-15 interactions cap-

turing realistic short-term preference dynamics. For se-
quential models, we limit the maximum sequence length
to 13, which covers approximately 95% of user behaviors.
Item popularity follows a long-tail distribution typical of
real-world recommender systems, and the datasets naturally
exhibit cold-start scenarios for new users and items, making
them challenging testbeds where collaborative filtering sig-
nals are often sparse.

The data was collected over one year (June 2022-2023)
from a public micro-video platform using a three-stage pro-
cess. First, seed videos from the homepage with more than
10,000 likes were collected to ensure quality and diversity.
Second, the video set was expanded by randomly sampling
10 related videos from each video’s webpage. Third, videos
were filtered based on quality criteria: text length >3 char-
acters (after removing meaningless symbols), image cover
with <75% single-color area, and video file size >100KB.
User-item interactions are based on public comment data
(approximately 1 comment per 100 likes), and all user and
video IDs have been anonymized to protect privacy. We
follow the leave-one-out evaluation protocol: interactions
are sorted by timestamp, with the last interaction per user
reserved for testing, the second-to-last for validation, and
all earlier interactions for training. This temporal splitting
reflects realistic recommendation scenarios where models
predict future interactions based on historical behavior.



7. Implementation Details

To facilitate reproducibility, we provide comprehensive hy-
perparameter configurations in Table 6. Our implementa-
tion consists of three main components: the VLLM back-
bone for feature extraction, the Cross-Layer Knowledge-
Fusion MoE for multi-level semantic aggregation, and the
recommendation module for ranking. The VLLM back-
bone (LLaVA-OneVision 7B) remains frozen during train-
ing, and we extract intermediate representations at every 4
transformer layers to balance computational cost and se-
mantic coverage. The MoE module learns adaptive gat-
ing weights to fuse 6 layer-wise experts, with each expert
compressing token sequences to a fixed budget of 64 tokens
for efficiency. Training is conducted on 8 NVIDIA H100
GPUs with mixed precision (fp16) for 100 epochs, using
parameter-group-specific learning rates to stabilize conver-
gence. All experiments use fixed random seeds (seed=42)
to ensure reproducibility.

8. Layer-Wise Contribution Analysis

Figure 1 provides a sample-level visualization of how the
Cross-Layer Knowledge-Fusion MoE distributes learned
weights across transformer layers during inference. The
heatmap comprises three complementary views. Gate
Weights (left panel) visualize the soft-gating distribution
m¢ learned by the MoE gating network for each validation
sample, reflecting the model’s learned prior on which lay-
ers contain task-relevant semantics. Actual Contributions
(middle panel) show the weighted expert outputs 7, x h(®),
capturing the effective semantic signal after applying gate
weights to layer-wise features. Difference (right panel) re-
veals the discrepancy between assigned priority and actual
contribution magnitude, exposing cases where high gate
weights yield modest outputs or vice versa. This three-
way decomposition enables fine-grained analysis of how the
MoE module learns to prioritize and utilize different seman-
tic levels, providing insights beyond aggregate statistics.
Across diverse video samples, we observe consistent
patterns: L8 (middle layers) dominates contributions with
high activation intensities (darker blue regions), while L4
and L16 remain largely inactive (lighter regions). This
sample-level evidence corroborates the aggregate statistics
presented in the main paper, where L8 contributes 40.9%
on average, LO 16.4%, L20 20.5%, and L4 and L16 less
than 7% combined. The heatmap also reveals variation
across samples: certain videos activate LO more strongly
(likely those requiring fine-grained visual details), while
abstract or high-level content emphasizes L20. Notably,
the discrepancy between gate weights and actual contribu-
tions is most pronounced for L4 and L16, suggesting that
these layers may encode information that requires larger
weights to manifest effectively in the final representation.

Table 6. Complete hyperparameter configurations for LinkedOut.
Parameters are grouped by component: VLLM feature extraction,
MOoE architecture, training procedure, and data preprocessing.

Hyperparameter Value

VLLM Backbone

Model architecture LLaVA-OneVision 7B

Parameters frozen Yes

Layer extraction interval Every 4 layers
(LO,L4,L8,L12,L16,L20)

Total extracted layers 6

Image resolution 224 x 224

MOoE Architecture
Number of experts
Token compression budget

6 (one per layer)

64 tokens per layer
Soft gating
(learnable weights)
4096

(LLaVA hidden size)

Gating mechanism

MoE fusion dimension

Training Configuration

GPUs 8 x NVIDIA H100

(80GB)
Precision Mixed (fp16)
Batch size 256 sequences
Training epochs 100
Optimizer AdamW
Learning rate (video enc.) 0.0001

Learning rate (text/img enc.) 0.0001

Learning rate (rec. head) 0.00001
Weight decay 0.1
Gradient clipping norm 5.0

step-schedule

Learning rate scheduler .
_with_warmup

Warmup steps 0
Scheduler gap 1 epoch
Scheduler alpha 1.0

Data Preprocessing
Max user history length
Max sequence length 13 interactions
Evaluation protocol Leave-one-out
Random seed 42

10 videos

This adaptive layer selection validates our design hypothe-
sis that video recommendation benefits from selectively fus-
ing multi-level semantic features rather than relying solely
on the final layer of a VLLM, as is common practice in
vision-language models.

9. Efficiency Analysis

9.1. Feature Storage Requirements

LinkedOut’s Store-and-Retrieve architecture requires pre-
computing and storing video features. Each video’s repre-
sentation consists of 6 layers (L0, L4, L8, L12, L16, L20),



Table 7. Feature storage requirements (float16 precision, 6 layers,
64 tokens per layer, dimension 4096).

Dataset Scale Videos Storage
MicroLens-50K [27] 19,220 60.5 GB
MicroLens-100K [27] 19,738 62.2 GB
Extrapolated (1M) 1,000,000 3.15TB
Extrapolated (10M) 10,000,000 31.5TB

Table 8. Estimated serving capacity based on 5.964 ms online
latency per query.

GPUs Queries/Second Concurrent Users (est.)
1x H100 168 ~10K
4x H100 672 ~40K
8x H100 1,344 ~80K
32x H100 5,376 ~320K

each with 64 compressed tokens of dimension 4096. Using
float16 precision, the storage footprint per video is calcu-
lated as:

Storage per video = 6 x 64 x 4096 x 2 bytes = 3.15 MB
4)
For MicroLens-100K (19,738 videos), total storage is ap-
proximately 62.2 GB, which fits comfortably in modern
server RAM or SSDs. Table 7 shows storage requirements
across different scales, demonstrating that LinkedOut re-
mains practical even for large-scale deployments with mil-
lions of videos.
Storage optimization strategies. The footprint can be fur-
ther reduced through: (1) float16 — int8 quantization (50%
reduction); (2) reducing token budget from 64 to 32 (50%
reduction); (3) selecting fewer layers (e.g., only LO, L8,
L20, reducing to 1.57 MB per video).

9.2. Real-Time Serving Capacity

Based on the measured online inference latency of 5.964
ms per user query (reported in the main paper), LinkedOut
can theoretically serve 1000/5.964 ~ 168 queries per sec-
ond on a single GPU. This translates to supporting approx-
imately 10,000 concurrent users with a 60ms response time
budget (assuming 10% overhead for batching and network
latency). Table 8 shows that with horizontal scaling across
multiple GPUs, LinkedOut can easily handle production-
scale workloads serving millions of daily active users.

9.3. Model Complexity Comparison

Table 9 compares trainable parameters across methods.
LinkedOut freezes the 7B-parameter VLLM backbone,
training only the lightweight MoE module (approximately
6.3M parameters: 6 experts with token compressor and gat-
ing network) and recommendation head (2.1M parameters),

Table 9. Model complexity comparison. LinkedOut trains signifi-
cantly fewer parameters by freezing the VLLM backbone.

Method Trainable Params Total Params
SASRec (ID-only) 21M 2.1 M
GRU4RecV 45 M 45 M
MMGCNip,v 38 M 38 M

. 84M 84M
LinkedQut (ours) (MoE + head) + 7B (frozen & 1-time)

totaling 8.4M trainable parameters. This is 5-10x fewer
than end-to-end VideoRec approaches that fine-tune entire
video encoders (typically 30-50M parameters for ResNet or
ViT backbones plus temporal modeling modules).
Training efficiency. Despite using a 7B VLLM, Linked-
Out’s training is more efficient than end-to-end video en-
coder training because: (1) frozen VLLM parameters re-
quire no gradient computation or optimizer states; (2) fea-
ture extraction is performed once offline, not repeated every
epoch; (3) only lightweight MoE fusion and recommenda-
tion head are trained online.

9.4. Amortized Cost Analysis

A key advantage of LinkedOut’s Store-and-Retrieve archi-
tecture is that VLLM feature extraction is a one-time offline
cost, amortized across all training epochs, hyperparameter
searches, and future model updates. In contrast, end-to-
end VideoRec methods must re-encode all videos in every
training epoch. Over 100 training epochs, this means end-
to-end methods perform video encoding 100X more fre-
quently than LinkedOut, making our approach 2-5x more
cost-efficient in total computational budget despite the up-
front VLLM cost. Beyond training efficiency, the one-time
feature extraction enables: (1) rapid experimentation with
different MoE architectures or recommendation modules
without re-encoding videos; (2) easy ensemble of multiple
recommendation models using shared features; (3) incre-
mental updates for new videos without retraining the entire
system; (4) feature reusability across multiple downstream
tasks (recommendation, search, content moderation).

9.5. Computational Complexity Analysis

We analyze the asymptotic time complexity of LinkedOut’s
key operations with respect to: N (videos), U (users), 1" (se-
quence length), L (layers), K (tokens per layer), d (feature
dimension). Offline feature extraction per video is O(d?)
(VLLM forward pass), totaling O(N - d?) for the entire cat-
alog (one-time cost). Online serving per query is O(L-K -d)
for MoE gating and fusion, plus O (N log ) for top-K can-
didate ranking. Training per epochis O(U -T'- L- K - d) for
MoE module updates. Critically, unlike end-to-end Video-
Rec methods with per-epoch complexity O(U - T' - N - d?),



LinkedOut’s training complexity is O(U-T'- L- K -d) where
L-K < N (6layers x 64 tokens vs. thousands of videos),
resulting in significantly faster training convergence.

9.6. Architectural Advantages

Beyond raw computational metrics, LinkedOut’s Store-
and-Retrieve architecture offers several system-level advan-
tages. First, decoupled scaling: feature extraction (GPU-
intensive) and recommendation serving (lightweight) can be
scaled independently, optimizing resource allocation. Sec-
ond, model flexibility: the recommendation module can be
retrained or A/B tested without re-extracting video features,
enabling rapid experimentation and online learning. Third,
cold-start handling: new videos can be recommended im-
mediately after feature extraction, without waiting for col-
laborative filtering signals to accumulate. Fourth, multi-task
support: extracted features support multiple downstream
applications (recommendation, search, duplicate detection,
content moderation) without redundant encoding. These ar-
chitectural benefits make LinkedOut practical for produc-
tion deployment, where system flexibility and maintainabil-
ity are as important as raw performance metrics.

10. Discussion

10.1. Mid-Level Layer Dominance

Our layer-wise contribution analysis reveals a surprising
finding: intermediate layer L8 contributes 40.9% on av-
erage, significantly outperforming both early layers (LO:
16.4%) and late layers (L20: 20.5%). This challenges
the common assumption in vision-language models that
the deepest layers contain the most task-relevant knowl-
edge. We hypothesize three potential explanations for this
phenomenon. First, video recommendation requires bal-
ancing fine-grained visual details (e.g., specific objects,
scenes, aesthetics) with abstract semantic concepts (e.g.,
genre, mood, topic). Early layers (LO, L4) primarily cap-
ture low-level visual features such as edges, textures, and
local patterns, which may be too specific for high-level
preference modeling. Late layers (L16, L20) encode ab-
stract reasoning and global scene understanding, which may
be over-abstracted for distinguishing similar videos. Mid-
level layers (L8, L12) strike an optimal balance by cap-
turing cross-modal alignments, object parts, and semantic
groupings that are both specific enough to distinguish con-
tent and general enough to generalize across user prefer-
ences. Second, video LLMs are pre-trained to align vi-
sual and textual concepts across multiple semantic lev-
els. Mid-level layers are where this cross-modal align-
ment is most active, as shown by prior interpretability stud-
ies [15, 41]. For recommendation, the ability to map vi-
sual content to semantic tags (e.g., “#vegan_cooking”, “#ur-
ban_photography”) requires precisely this type of cross-

modal grounding, which is most pronounced in intermedi-
ate layers. Third, while video LLMs are trained for lan-
guage generation, video recommendation prioritizes dis-
criminative visual understanding rather than generative rea-
soning. The final layers of LLMs are optimized for next-
token prediction and causal reasoning, which may not be
directly transferable to ranking-based recommendation. In
contrast, mid-level representations retain richer perceptual
information that can be more effectively adapted to prefer-
ence matching through our lightweight MoE fusion.

10.2. Content-Adaptive Layer Activation Patterns

Beyond aggregate statistics, our sample-level heatmap anal-
ysis (Figure 1) reveals significant variation in layer activa-
tion patterns across different videos. This adaptive behavior
suggests that LinkedOut dynamically selects semantic lev-
els based on video content characteristics. Videos with rich
visual details (e.g., cooking tutorials, product reviews) tend
to activate LO more strongly, suggesting that fine-grained
visual features are critical for these content types. Con-
versely, videos with abstract or conceptual content (e.g., ed-
ucational talks, vlogs) emphasize L.20, indicating that high-
level reasoning is more valuable. This content-aware adap-
tation demonstrates that our MoE gating network learns
meaningful patterns beyond simple averaging. The abil-
ity to leverage different semantic levels for different video
types has important implications for cold-start recommen-
dation. New videos with limited interaction data can still
be effectively represented by extracting appropriate seman-
tic features from the video LLM. For example, visually rich
videos can rely on early-layer features even without textual
metadata, while abstract videos can leverage late-layer con-
ceptual understanding. The observed layer specialization
suggests that LinkedOut may generalize well to other video
domains beyond micro-videos. For instance, movie recom-
mendation might benefit more from late-layer features (cap-
turing narrative and thematic elements), while fashion or
product videos might prioritize early-layer features (captur-
ing visual aesthetics and details). Future work could explore
domain-specific layer selection strategies.



