

Generative View-Correlation Adaptation for Semi-Supervised Multi-View Learning

Yunyu Liu **Lichen Wang** wanglichenxj@gmail.com liu.yuny@northeastern.edu bai.yue@northeastern.edu

Yue Bai

gin.ca@norteasterh.edu

Zhengming Ding

zd2@iu.edu

Yun Fu yunfu@ece.neu.edu

SMILE Lab **Electrical & Computer Engineering** Northeastern University

SmileLab website: https://web.northeastern.edu/smilelab/ Code will be available: https://github.com/wenwen0319/GVCA

000

Introduction

Topic:

Multi-view Action Recognition

Setting:

- Input: Labeled and unlabeled Multi-view action sequences (e.g., RGB + Depth)
- Output: Action prediction

Challenges:

- Heterogeneous multi-view feature domains
- Small dataset; hard to label
- Inconsistent view-specific predictions

Concept of Multi-view Action Recognition

Generative View-Correlation Adaptation for Semi-Supervised Multi-View Learning (GVCA)

- 1. A novel fusion strategy named View-Correlation Adaptation (VCA) is deployed in both feature and label space.
- 2. A new SeMix approach to generate samples using both labeled and unlabeled data.
- 3. An effective label-level fusion network is proposed to obtain the final classification result.

Our approach

View-Correlation Adaptation and Entropy-based version

- 1. A novel fusion strategy named View-Correlation Adaptation (VCA) is deployed in both feature and label space.
- 2. A new SeMix approach to generate samples using both labeled and unlabeled data.
- 3. An effective label-level fusion network is proposed to obtain the final classification result.

SeMix

Mixup:

- The dataset has little labeled data. To fully explore the data, a data generating method is used.
- x_i, x_j are labeled features y_i, y_j are corresponding labels
- The new data can be generated by

•
$$X = \alpha x_i + (1 - \lambda) x_j$$
 $Y = \alpha y_i + (1 - \lambda) y_j$

SeMix:

Insight: We explore the connections from both labeled and unlabeled samples.

VCA

Motivation:

• **Inter-view adaptation**: Adapt the point representation based on classification guidance of another view

VCA

Method:

- Step 1 Update E₁, E₂, C₁ and C₂ with the *L_{labeled}*
- Step 2 $Max_{C_1,C_2} L_{unlabeled}$, fixed E_1 , E_2 .
- Step 3 $\underset{E_1,E_2}{\text{Min}} L_{unlabeled}$, fixed C₁(.) and C₂(.).
- The pairwise loss of labeled features is

$$L_{labeled} = \sum_{i=1}^{2} \left\| y_{j}, C_{i} \left(E_{i}(x_{j}^{i}) \right) \right\|$$

Where $\|.\|$ is L2 Normalization

• The pairwise loss of unlabeled features is

 $L_{unlabeled} = W\left(C_1(E_1(x_U^1)), C_2\left(E_2(x_U^2)\right)\right)$ Where W is Wasserstein Distance

VCA-entropy

- Step 1 Update E_1 , E_2 , C_1 and C_2 with the label loss of labeled features
- Step 2

```
\begin{array}{l} \underset{C_{1}}{\overset{}{\operatorname{Max}}} L_{unlabeled}^{1}, \, \mathbf{fixed} \, \mathbf{E}_{1}. \\ \underset{C_{2}}{\overset{}{\operatorname{Max}}} L_{unlabeled}^{2}, \, \mathbf{fixed} \, \mathbf{E}_{2}. \end{array}
```

- Step 3 $Min_{E_1} L^1_{unlabeled}$, fixed C₁. $Min_{E_2} L^2_{unlabeled}$, fixed C₂.
- H(.) is the entropy of a distribution $H(.) = -\sum p(x) \ln p(x)$
- $C_1(.) = C_1(E_1(x_U^1)) C_2(.) = C_2(E_2(x_U^2))$
- The pairwise loss of unlabeled features is

$$L_{unlabeled}^{1} = \frac{H(C_{1}(.))}{H(C_{2}(.))} ||C_{1}(.) - C_{2}(.)||$$
$$L_{unlabeled}^{2} = \frac{H(C_{2}(.))}{H(C_{1}(.))} ||C_{1}(.) - C_{2}(.)||$$

Insight:

The discrepancy still exists even after the alignment procedure.

We deploy a novel fusion strategy in label space.

$$L_F = \left\| C_F \left(reshape \left(\widetilde{y}_1^T \widetilde{y}_1 + \widetilde{y}_1^T \widetilde{y}_2 + \widetilde{y}_2^T \widetilde{y}_2 \right) \right) - y \right\|_F,$$

Where \tilde{y}_1 and \tilde{y}_2 are initial results from view 1 and view 2, y is the ground truth of corresponding labeled data.

[1] Hossein Rahmani, et al. Histogram of oriented principal components for cross-view action recognition. IEEE Trans. PAMI, 38(12):2430–2443, 2016 [2] Ferda Ofli, et al. Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013. [3] Yan-Ching Lin, et al. Human action recog-nition and retrieval using sole depth information. In Proc. ACM MM, pages 1053–1056, 2012.

RGB+D

SVM [25] 66.11 RGB VLAD [11] 67.85 • Multi-view action recognition TSN [34] 67.85 LSR 82.30 **Baselines and Performance.** SVM [25] 78.92 Depth Classification accuracy (%) WDMM [1] 81.05

Setting

Method

MLAN [19]

Ours

AMUSE [21]

GMVAR [31]

LSR

Conclusion:

Setting:

DHA[3]

- High performance
- Effectiveness of all modules

LSR	77.36	68.77	97.17
NN	86.01	73.70	96.88
SVM [25]	83.47	72.72	96.80
AMGL [20]	74.89	68.53	94.70

76.13

78.12

88.72

89.31

Classification Accuracy

DHA

65.02

UWA

67.59

69.77

71.54

71.01

45.45

34.92

46.58

66.64

70.32

76.28

77.08

MHAD

96.46

96.09

97.17

97.31

47.63

45.39

66.41

96.46

97.23

98.94

98.94

Experiments

• Datasets: UWA[1], MHAD[2], and

Setting	RGB	Depth	RGB+D
TSN [34]	67.85	-	-
WDMM [1]	-	81.05	-
MLP	77.10	79.01	79.12
Mixup	68.51	81.43	81.48
SeMix	69.37	82.73	83.15
VCA	75.26	80.86	81.32
VCA-entropy	80.86	82.61	84.10
Ours complete	-	-	89.31

Ablation Study

Experiments

Setting:

- Datasets: UWA[1], MHAD[2], and DHA[3]
- Multi-view action recognition
- Different ratios of labeled training samples and generate number

Conclusion:

- High performance when using less labeled data, achieves a comparable result using 50%.
- Achieves the peak at 1x and then fluctuates.

Table 3. Classification $\operatorname{accuracy}(\%)$ given different ratios of labeled training samples.

Dataset	Ratio	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
DHA	GMVAR [31] Ours	$44.86 \\ 48.15$	$62.55 \\ 69.14$	69.14 74.90	73.25 79.42	77.37 83.54	80.66 83.56	84.36 85.60	84.36 86.83	86.01 87.24	88.72 89.31
UWA	GMVAR [31] Ours	$35.18 \\ 36.36$	$46.64 \\ 57.71$	$54.15 \\ 62.85$	$58.57 \\ 64.03$	$\begin{array}{c} 65.61 \\ 67.98 \end{array}$	69.17 70.75	$73.91 \\ 73.12$	75.49 76.56	$76.28 \\ 76.66$	76.28 77.08
UCB	GMVAR [31] Ours	$53.36 \\ 52.30$	72.79 75.83	90.11 91.17	92.64 92.23	93.41 92.93	94.76 93.11	95.91 95.05	95.49 96.82	96.28 97.88	98.94 98.94

 Table 4. Accuracy (%) of different generate number

Dataset	0x	0.1x	0.3x	0.5x	1x	2x	3x
DHA	84.10	87.24	88.07	88.07	89.31	88.89	89.31
UWA	75.49	76.30	77.08	76.68	77.08	77.47	76.28
MHAD	98.23	98.59	98.23	98.23	98.94	98.94	97.88

Hossein Rahmani, et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016
 Ferda Ofli, et al. Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.
 Yan-Ching Lin, et al. Human action recog-nition and retrieval using sole depth information. In Proc.ACM MM, pages 1053–1056, 2012.

Hossein Rahmani, et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016
 Ferda Ofli, et al. Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.
 Yan-Ching Lin, et al. Human action recog-nition and retrieval using sole depth information. In Proc.ACM MM, pages 1053–1056, 2012.

30

Experiments

Setting:

- Datasets: UWA[1], MHAD[2], and DHA[3]
- Multi-view action recognition
- TSNE visualization

Conclusion:

• High performance when using less labeled data, achieves a comparable result using 50%.

Thank you!

Please contact: <u>liu.yuny@northeastern.edu</u> for questions.

SMILE Lab Electrical & Computer Engineering Northeastern University