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Topic:

• Multi-view Action Recognition

Setting:

• Input: Labeled and unlabeled Multi-view 
action sequences (e.g., RGB + Depth)

• Output: Action prediction

Challenges:

• Heterogeneous multi-view feature domains

• Small dataset; hard to label 

• Inconsistent view-specific predictions

Introduction

Concept of Multi-view Action Recognition



Generative View-Correlation Adaptation for Semi-Supervised Multi-View 
Learning (GVCA)

1. A novel fusion strategy named View-Correlation Adaptation (VCA) is deployed in both 
feature and label space. 

2. A new SeMix approach to generate samples using both labeled and unlabeled data.

3. An effective label-level fusion network is proposed to obtain the final classification result.

Our approach

Framework of GVCA



View-Correlation Adaptation and Entropy-based version

1. A novel fusion strategy named View-Correlation Adaptation (VCA) is deployed in both 
feature and label space. 

2. A new SeMix approach to generate samples using both labeled and unlabeled data.

3. An effective label-level fusion network is proposed to obtain the final classification result.

Our approach

Framework of GVCA
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SeMix

https://www.diyphotography.net/reverse-prisma-ai-turns-paintings-photos-turns-winter-summer/

Mixup:

• The dataset has little labeled data. To fully explore the data, a data generating method is used.

• xi, xj are labeled features  yi,  yj are corresponding labels

• The new data can be generated by

• 𝑋 = 𝛼𝑥𝑖 + (1 − 𝜆) 𝑥𝑗 𝑌 = 𝛼𝑦𝑖 + (1 − 𝜆) 𝑦𝑗

SeMix:

Insight: We explore the connections from both labeled and unlabeled samples. 

𝑋𝑈_𝑖 = 𝜆𝑥𝑈 + (1 − 𝜆) 𝑥𝑖
𝑋𝑈_𝑗 = 𝜆𝑥𝑈 + (1 − 𝜆) 𝑥𝑗
𝑌𝑈_𝑖 = 𝜆𝑦𝑈 + (1 − 𝜆) 𝑦𝑖
𝑌𝑈_𝑗 = 𝜆𝑦𝑈 + (1 − 𝜆) 𝑦𝑗
𝜆′~𝐵ⅇ𝑡𝑎 𝛼, 𝛼 𝛼=0.5
𝜆 = 𝑚𝑎𝑥 𝜆′, 1 − 𝜆′

𝐿𝑜𝑠𝑠 = 𝐶 𝑋𝑈_𝑖 − 𝐶 𝑋𝑈_𝑗 − (1 − 𝜆)(𝑦𝑖 − 𝑦𝑗)

where C is the classifier, xU is the feature of an unlabeled data. 

Associate labeled + unlabeled samples

Label consistency loss



VCA
Motivation:

• Inter-view adaptation: Adapt the point 

representation based on classification guidance of 

another view
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VCA

https://www.diyphotography.net/reverse-prisma-ai-turns-paintings-photos-turns-winter-summer/

Method:

• Step 1 Update E1 , E2 , C1  and C2 with the 𝐿𝒍𝒂𝒃𝒆𝒍𝒆𝒅
• Step 2 

Max
𝐶1,𝐶2

𝑳𝒖𝒏𝒍𝒂𝒃𝒆𝒍𝒆𝒅, fixed E1 , E2 . 

• Step 3

Min
𝐸1,𝐸2

𝑳𝒖𝒏𝒍𝒂𝒃𝒆𝒍𝒆𝒅, fixed C1(.) and C2(.). 

• The pairwise loss of labeled features is 

𝐿𝒍𝒂𝒃𝒆𝒍𝒆𝒅 =

𝑖=1

2

𝑦𝑗 , 𝐶𝑖 𝐸𝑖(𝑥𝑗
𝑖)

Where . is L2 Normalization

• The pairwise loss of unlabeled features is 

𝐿𝒖𝒏𝒍𝒂𝒃𝒆𝒍𝒆𝒅 = 𝑊 𝐶1 𝐸1(𝑥𝑈
1) , 𝐶2 𝐸2 𝑥𝑈

2

Where W is Wasserstein Distance
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VCA-entropy

https://www.diyphotography.net/reverse-prisma-ai-turns-paintings-photos-turns-winter-summer/

Method:

• Step 1 Update E1 , E2 , C1  and C2 with the label loss of labeled 

features

• Step 2 

Max
𝐶1

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
1 , fixed E1.

Max
𝐶2

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
2 , fixed E2 . 

• Step 3

Min
𝐸1

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
1 , fixed C1. 

Min
𝐸2

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
2 , fixed C2.

• H(.) is the entropy of a distribution 𝐻 . = −σ𝑝 𝑥 ln 𝑝(𝑥)

• 𝐶1 . = 𝐶1 𝐸1 𝑥𝑈
1 𝐶2 . = 𝐶2 𝐸2 𝑥𝑈

2

• The pairwise loss of unlabeled features is 

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
1 =

𝐻 𝐶1 .

𝐻(𝐶2 . )
||𝐶1 . − 𝐶2(. )||

𝐿𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
2 =

𝐻 𝐶2 .

𝐻(𝐶1 . )
||𝐶1 . − 𝐶2(. )||
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Insight:

The discrepancy still exists even after the alignment procedure.

We deploy a novel fusion strategy in label space.

𝑳𝑭 = 𝑪𝑭 𝒓𝒆𝒔𝒉𝒂𝒑𝒆 𝒚𝟏
𝑻𝒚𝟏 + 𝒚𝟏

𝑻𝒚𝟐 + 𝒚𝟐
𝑻𝒚𝟐 − 𝒚

𝑭
,

Where 𝑦1 and 𝑦2 are initial results from view 1 and view 2, y is the ground truth of corresponding labeled 
data.

label-level fusion network



Setting:

• Datasets: UWA[1], MHAD[2], and 
DHA[3]

• Multi-view action recognition

• Baselines and Performance. 
Classification accuracy (%)

Conclusion:

• High performance

• Effectiveness of all modules

Experiments

[1] Hossein  Rahmani,  et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016

[2] Ferda Ofli, et al.  Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.

[3] Yan-Ching  Lin,  et al. Human action recog-nition and retrieval using sole depth information.   In Proc.ACM MM, pages 1053–1056, 2012.

Classification Accuracy

Ablation Study



Setting:

• Datasets: UWA[1], MHAD[2], and 
DHA[3]

• Multi-view action recognition

• Different ratios of labeled training 
samples and generate number

Conclusion:

• High performance when using less 
labeled data, achieves a comparable 
result using 50%.

• Achieves the peak at 1x and then 
fluctuates.

Experiments

[1] Hossein  Rahmani,  et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016

[2] Ferda Ofli, et al.  Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.

[3] Yan-Ching  Lin,  et al. Human action recog-nition and retrieval using sole depth information.   In Proc.ACM MM, pages 1053–1056, 2012.



Setting:

• Datasets: UWA[1], MHAD[2], and 
DHA[3]

• Multi-view action recognition

• TSNE visualization

Conclusion:

• High performance when using less 
labeled data, achieves a comparable 
result using 50%.

Experiments

[1] Hossein  Rahmani,  et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016

[2] Ferda Ofli, et al.  Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.

[3] Yan-Ching  Lin,  et al. Human action recog-nition and retrieval using sole depth information.   In Proc.ACM MM, pages 1053–1056, 2012.
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