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Abstract—High-dimensional time series segmentation aims
to segment a long temporal sequence into several short and
meaningful subsequences. The high-dimensionality makes it
challenging due to the complicated correlations among the
sequential features. A large number of labeled data is required
in existing supervised methods, and unsupervised methods
mainly deploy clustering approaches, which are sensitive to
outliers and hard to guarantee high performance. Also, most
existing methods mainly rely on hand-craft features to deal with
regular time series segmentation and achieve promising results.
However, these approaches cannot effectively handle high-
dimensional time series and will result in a high computational
cost. In our work, we propose a novel unsupervised repre-
sentation learning framework called Dual-Side Auto-Encoder
(DSAE). It mainly focuses on high-dimensional time series
segmentation by effectively capturing the temporal correlative
patterns. Specifically, a single-to-multiple auto-encoder is de-
signed to capture local sequential information. Besides, a long-
shot distance encoding strategy is proposed. It aims to explicitly
guide the learning process to obtain distinctive representations
for segmentation. Furthermore, the long-short distance strategy
is also executed in the decoded feature space, which implicitly
directs the representation learning. Substantial experiments on
six datasets illustrate the model effectiveness1.

I. INTRODUCTION

Time series segmentation aims to segment a long time

series into several short and meaningful divisions. Most

real-world time series data is collected continuously without

further processing. Hence, it is an indispensable preprocess-

ing step for a wide range of downstream applications. For

example, real-world videos usually consist of tens or even

hundreds of actions. However, most existing video-based

algorithms (e.g., action recognition [1]) are designed for

handling videos which only contain a single action. Hence,

the row video needs to be segmented into several short clips.

Unsupervised time series segmentation is a challenging

task [2], [3]. It aims to explore efficient clustering methods

to gather coherent representations into one cluster without

supervision. Different from static data, time series contains

more temporal correlations which is critical for clustering

tasks. In addition, the high dimensionality of time series

significantly increases the difficulty of segmentation [4].

As a summary, there are three main challenges for unsu-

pervised high-dimensional time series segmentation: 1) How

1Code will be released at https://github.com/yueb17/HTSS
This research is supported by the U.S. Army Research Office Award
W911NF-17-1-0367.

Figure 1: The framework of our DSAE. The basic framework is
the single-to-multiple auto-encoder. The long-short constraint is
applied on both encoder and decoder as a dual-side structure.

to extract complicated temporal and structural connections;

2) How to handle the complex correlations in the high-

dimensional features space; 3) How to make accurate seg-

mentation in an unsupervised scenario. Effectively exploring

the dependencies among temporal sequence is the key factor

for time series segmentation, and existing approaches can

be categorized into three groups [5]: temporal-proximity-

based [4], model-based [6], and representation-based [7] al-

gorithms. Besids, leveraging the transfer learning technique,

extra temporal knowledge is explored to achieve better per-

formance in [8]. However, these methods have several draw-

backs. First, most methods follow conventional optimization

strategies that require computational costly algorithms (e.g.,

eigen decomposition). Second, some methods belong to

the transductive scenario where the trained/optimized model

cannot be used in new/unseen data. Third, most approaches

globally consider temporal information while ignoring the

trivial local details which leads to low performance.

In our work, we propose a novel Dual-Side AutoEncoder

(DSAE) (Fig. 1) to handle the above issues. A specifically

designed single-to-multiple auto-encoder is firstly proposed,

which reconstructs multiple neighbors of the input feature

and preserves the temporal local information. Moreover, a

long-short encoding strategy is proposed, which includes
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similar and distinctive constraints. It explicitly guides the

model to obtain discriminative representations for clustering.

Further, the long-short constraints are also deployed on the

decoding side to direct the learning process implicitly. The

main contributions of our work are listed as below:

• A novel single-to-multiple auto-encoder is proposed.

It extracts the temporal structural knowledge from

multiple neighbors of the input feature to enhance the

learning process and obtain effective representations.

• A long-short constraint is designed to obtain low-

variation representations of close time points while

diversifying the representations of the long-distance

time points. It effectively enhances the representation

learning and benefits the segmentation task.

• A dual-side structure is achieved by employing the

long-short constraint on both encoding and decoding to

explicitly and implicitly guide the representation learn-

ing. It relaxes the strict reconstruction assumption of

conventional auto-encoder and helps to obtain discrim-

inative representations for time series segmentation.

II. RELATED WORK

A. Temporal Clustering

Temporal clustering techniques can be widely used in

many applications such as context recognition, stock data

mining [9], and action recognition [10]. Hierarchical aligned

cluster analysis [11] proposes a dynamic kernel for time

alignment to cluster temporal data. Semi-Markov K-means

clustering algorithms [12] extracts repetitive temporal pat-

terns contained in time series data. The maximum-margin

clustering method [13] identifies the length and position

of each temporal segment simultaneously. A temporal sub-

space learning method is utilized [14] to learn a dictionary

and representations jointly with a regularization term. The

correlative patterns are considered in [15] to measure the

time series similarity and cluster the sequence. The transfer

learning techniques are utilized [8] to explore temporal

knowledge from extra time series information. The low-

rank constraint is included in the learning procedure for

achieveing higher performance [7]. However, these methods

utilize conventional algorithms with high computational cost

and ignore temporal local correlations. Our DSAE frame-

work considers both local and global temporal patterns for

deriving effective representations.

B. Subspace Clustering

Most existing relevant methods are based on subspace

learning. They aim to project the original data into an

informative and distinctive subspace for clustering [16]–

[19]. Sparse subspace clustering (SSC) [20] utilizes a sparse

constraint for subspace learning. Least-square regression

(LSR) [21] proposes a grouping effect for clustering data

with high correlations based on the Frobenius norm. The

global structure of feature space is explored in low-rank rep-

resentation (LRR) [22] and further used to acquire lowest-

rank representations. Robust subspace clustering (RSC) [23]

aims to find a multi-subspace representation to achieve

robust learning process. However, most of above methods

are not specifically proposed for temporal data segmentation.

Further, most of them are based on conventional computa-

tional methods such as eigen-decomposition, which result in

a high computational cost.

C. Auto-encoder for Temporal Data

Many auto-encoder based frameworks have been proposed

for a wide range of temporal data applications. A deep auto-

encoder [24] is designed to use multi-modal fusion during

feature extraction for pose recovery task. A convolutional

auto-encoder is proposed for unsupervised learning temporal

manifolds [25]. Action forecasting is achieved by using

conditional variational auto-encoders as a generative model

based on the static scene understanding [26]. A stacked

denoising auto-encoder is well designed for temporal data

classification based on representation learning [27]. How-

ever, most existing auto-encoder structures are supervised

learning methods. In our work, we design an unsupervised

auto-encoder based framework to acquire informative repre-

sentations for high-dimensional time series segmentation.

III. METHODOLOGY

Let X ∈ R
T×f be a time series sample, where T denotes

the length and f represents the feature dimension. Our

DSAE contains three major parts: 1) single-to-multiple auto-
encoder; 2) long-short encoding; 3) long-short decoding.

A. Single-to-Multiple Auto-Encoder

Existing auto-encoder structures mainly focus on recon-

structing the original input while cannot preserve the local

temporal information, which is crucial for time series seg-

mentation. To this end, we propose a single-to-multiple auto-

encoder structure to preserve the local temporal correlations.

It sets the reconstruction targets as multiple neighbors of the

original input and consists of a single-point encoder Ee and

a multi-point decoder Ed formulated as follows:

ht
e = Ee(X

t),

ht
d = Ed(h

t
e),

(1)

where Xt ∈ R
f denotes the input feature at time t.

ht
e denotes the hidden representation, ht

d represents the

reconstruction output. Ee and Ed are encoder and decoder,

respectively. They are achieved by dense layers with ReLU

activations. We set the original input as well as its neighbors

as reconstruction targets achieved by following objective:

Lt
a =

t+w∑

k=t−w

‖ht
d −Xk‖2F, (2)
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where ‖ · ‖2F denotes l2-norms. w = (W − 1)/2 and W
denotes the number of reconstruction neighbors. In addition,

for the u-th and v-th points at the beginning and end of the

whole time series, where 1 ≤ u ≤ w and T−w ≤ v ≤ T , we

only consider the first [1, u+w] and last [T−v−w, T ] points

as neighbors. In this way, the hidden representation of one

time point is guided to preserve local temporal information

from its neighbors. For the whole time series, we have

La =
T∑

t=1

Lt
a. (3)

We achieve our single-to-multiple auto-encoder via Eqs. 1-3.

B. Long-Short Encoding

Capturing discriminative patterns is decisive to achieve

higher segmentation performance. It requires the hidden

representations to be similar in the same segment and be

distinguishing among different segments. To this end, we

design a long-short encoding strategy to enhance representa-

tion learning. It consists of two constraints: 1) short-distance

similar constraint and 2) long-distance distinctive constraint.

The former one is given by

Ll =
T∑

t=1

t+s∑

k=t−s

‖ht
e − hk

e‖2F, (4)

where ht
e is the hidden representation and hk

e denotes the

neighbor representations around ht
e which are targets to add

short-distance constraint. s is the one-side constraint length.

The inner summation term denotes the constraint at time t.
The outer summation indicates the constraint on the whole

time series. Our short-distance constraint considers the local

similarity to increase the hidden representation smoothness.

On the other hand, the long-distance distinctive constraint

aims to make the representations in different segments

distinctive with each other, which is formulated by

Lg =
T∑

t=1

(

t−q∑

k=t−q−s

‖ht
e − hk

e‖2F +

t+q+s∑

k=t+q

‖ht
e − hk

e‖2F),
(5)

where the two summation terms in the bracket are the two

sides constraint at time t. q is the distance between the t-th
representation and the targets of long-distance constraint. s
is the range of constraint. This strategy makes the far away

representations distinctive and prevents the dispersive tem-

poral representations being clustered into the same segment.

The complete long-short encoding is to minimize Ll and

maximize Lg simultaneously, which is formulated as follow:

Lh = Ll − θhLg, (6)

where Lh is the total loss and θh is the trade-off parameter.

C. Long-Short Decoding

The long-short encoding strategy explicitly guides the

learning process via adding constraint on the hidden rep-

resentations. In the auto-encoder structure, the hidden rep-

resentation will be decoded to reconstruct the input. Hence,

the feature distribution of the reconstructions also affects

the hidden representations. To this end, we further add

this long-short strategy on decoding to implicitly direct the

representation learning. Similar to the encoding constraint,

the long-short decoding can be separated into two parts:

the short-distance similar constraint and the long-distance

distinctive constraint. The short-distance constraint can be

formulated as follows:

Lm =
T∑

t=1

t+s∑

k=t−s

‖ht
d − hk

d‖2F, (7)

where ht
d denotes t-th decoding output and hk

d denotes the

neighbors of ht
d. s denotes the range of constraint. On the

other hand, the long-distance constraint is given by:

Ln =
T∑

t=1

(

t−q∑

k=t−q−s

‖ht
d − hk

d‖2F +

t+q+s∑

k=t+q

‖ht
d − hk

d‖2F),
(8)

where q denotes the distance between constraint and t-th
output and s indicates the range of constraint. The long-short

decoding is achieved by minimizing Lm and maximize Ln

with the trade-off parameter θr, which is given by

Lr = Lm − θrLn. (9)

We combine the single-to-multiple auto-encoder and the

pair of long-short constraints to achieve the Dual-Side Auto-

Encoder (DSAE), which is achieved by minimizing the

following objective:

L = La + λhLh + λrLr, (10)

where L denotes the final objective. λh and λr are two trade-

off parameters. Our DSAE framework aims to obtain infor-

mative representations from the original high-dimensional

time series input. We follow the previous work [7], and

forward the learned representations He to the down-stream

NCuts [28] clustering algorithm for the final segmentation.

IV. EXPERIMENTS

A. Datasets

We use 6 real-world human action datasets, which contain

complicated high-dimensional time series data to evalu-

ate our model. Multi-Modal Action Detection Dataset
(MAD) [33] contains multi-modal human actions videos per-

formed by 20 subjects and each subject performs 35 actions.

We use RGB modal for evaluation. UT-Interaction Dataset
(UT) [34] includes 20 action videos. Each one contains 6

categories of human interactive actions such as punching

and pushing. Weizmann Dataset (Weiz) [35] contains 90
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Table I: Segmentation Performance

Datasets MAD Keck Weizmann UT ChaLearn16 ChaLearn14

Methods ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

KMS [29] 0.3541 0.4188 0.3510 0.4553 0.4081 0.5562 0.4712 0.5677 0.4331 0.3221 0.4523 0.5968
KMD [30] 0.3226 0.3914 0.3970 0.4702 0.4441 0.5289 0.5122 0.5108 0.4160 0.2946 0.5078 0.6270
SPE [31] 0.3639 0.4369 0.3886 0.4744 0.4127 0.5435 0.4477 0.4894 0.4066 0.2721 0.4359 0.5877
LRR [22] 0.2397 0.2249 0.4297 0.4862 0.3638 0.4382 0.4162 0.4051 0.3239 0.1423 0.4137 0.5033
OSC [32] 0.4327 0.5589 0.4393 0.5931 0.5216 0.7047 0.5846 0.6877 0.4025 0.3346 0.4759 0.7189
SSC [20] 0.3817 0.4758 0.3137 0.3858 0.4576 0.6009 0.4389 0.4998 0.3867 0.2108 0.4853 0.6788
LSR [21] 0.3979 0.3667 0.4894 0.4548 0.5091 0.5093 0.5183 0.4322 0.3917 0.1973 0.5913 0.5817
TSC [14] 0.5556 0.7721 0.4781 0.7129 0.6111 0.8199 0.5340 0.7593 0.5414 0.6000 0.5373 0.7861
TSS [8] 0.4652 0.6987 0.4929 0.7342 0.6101 0.7112 0.5541 0.7114 0.5385 0.6410 0.3788 0.6602
LTS [7] 0.4833 0.7268 0.5128 0.7365 0.6155 0.7273 0.5629 0.7223 0.5359 0.5369 0.3734 0.5684

Ours 0.5548 0.7734 0.5753 0.7407 0.6199 0.7879 0.6006 0.7950 0.5905 0.6673 0.6055 0.8515

videos including 10 actions such as running and walking

performed by 9 subjects. Keck Gesture Dataset (Kect) [36]

has 14 classes of actions performed by 3 subjects. All actions

are based on military signals. ChaLearn 2014 [37] contains

14000 gesture samples . They are about 20 classes of sign

gesture for Italian vocabulary performed by different users.

ChaLearn 2016 [38] contains 47933 gesture samples in

22535 RGB-D videos with one or more gestures. 249 gesture

classes are performed by 21 subjects. We use RGB videos

for model evaluation.

B. Baseline Methods

We first use three conventional clustering methods for

comparisions: 1) K-means (KMS) [29], 2) K-medoids

(KMD) [30], and 3) Spectral Clustering (SPE) [31]. Next,

we utilize four recently published representation learning

methods: 1) Sparse Subspace Clustering (SSC) [20], 2) Least

Square Regression (LSR) [21], 3) Low-Rank Representation

(LRR) [22], and 4) Ordered Subspace Clustering (OSC) [32].

We also introduce three state-of-the-art approaches: 1) Tem-

poral Subspace Clustering (TSC) [14] utilizes a Laplacian

regularization on temporal domain and a learned dictionary

simultaneously to acquire distinctive temporal representa-

tions, 2) Transfer Subspace Segmentation (TSS) [8] proposes

a transferable temporal segmentation algorithm based on

source and target datasets. It fully utilizes the auxiliary

data information to boost the segmentation performance,

and 3) Low-Rank Transfer Segmentation (LTS) [7] proposes

a sequential graph model and adds a weighted low-rank

constraint to improve the temporal data segmentation per-

formance using a transfer learning fashion.

C. Implementation

We apply the HoG encoding [39] to obtain 324-

dimensional frame-level features as time series input. Fur-

ther, we standardize the data samples from different datasets

into the same format. Concretely, we follow [13] to obtain

long video containing 10 actions for Weizmann and Keck

datasets. Samples in MAD dataset contain more than 10

actions, we cut them to 10 actions per video. UT dataset

contains 6 actions per video, we directly use it for evaluation.

For ChaLearn2016 dataset, we pick samples with more than

Figure 2: Visualization of segmentation results. Different colors
denote different temporal clips.

5 actions and remove the excrescent actions to make all

videos contain 5 actions. For ChaLearn2014 dataset, we pick

out videos containing more than 10 actions and rearrange

them to 10 actions using the same strategy.

As illustrated in Fig. 1, the HoG features are set as

input for our DSAE framework to obtain the effective

representations for clustering tasks. The single-to-multiple

auto-encoder, achieved by two linear mappings with ReLU

activations, and dual-side constraints synergistically coordi-

nate to obtain the representations. Then, the NCuts cluster

algorithm is employed to make final segmentation.

D. Performance Analysis

We use Normalized Mutual Information (NMI) [40] and

accuracy (ACC) for model evaluation and results are shown

in Table I. The first three traditional clustering algorithms

obtain low clustering performances. The next four recently

proposed baselines focus on subspace learning and obtain

better performances. However, these methods cannot achieve

state-of-the-art performances, since they are not designed for

temporal data. TSC is specifically designed for temporal data

segmentation and obtains competitive results. The last two

methods use the transfer learning technique, which utilize

auxiliary information from source data to improve target data

performance. However, after adopting their experimental

settings for fair comparisons, they only obtain comparable

performances like other baseline methods. Different from

all the baseline approaches, our proposed model takes ad-

vantage of deep neural networks to extract complicated
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Figure 3: t-SNE visualizations for several baselines and our model

and informative patterns for clustering. It fully considers

the temporal relationship residing in time series data and

outperforms other methods.

The segmentation results of one Weizmann dataset sample

are visualized in Fig. 2. Different colors denote different

segments. The results of LSR and LRR are disordered with

many fragments. SSC and OSC obtain better results, how-

ever, for many temporal sequences with rhythmed patterns

(e.g. repetitive motion in human action), their results are still

divided into many fragments. TSC has much better perfor-

mance. However, it still generates multiple fragments in one

cluster occasionally, and the boundaries of several segments

are not accurate. TSS and LTS achieve more reasonable

results without many redundant fragments in each segment.

However, they always make mistakes on boundaries for each

cluster. Our method segments the whole time series more

accurately without many unreasonable fragments.

Our model is designed in an unsupervised fashion, which

fully explores the latent patterns from time series itself

without any other supervisions. To further illustrate the

model effectiveness, we make a comparison between our

model and a supervised method. We regard the HoG feature

of each temporal input as a sample with the label of its

corresponding segment. Next, a linear classifier is trained

and the pre-trained classifier is used to extract features

for both training and test sets. The extracted features are

clustered via NCuts algorithm for evaluation. We use the

leave-one-subject-out evaluation. The performances on three

datasets are shown in Table II. We observe the consid-

erable performance drop in supervised scenario compared

with our proposed method. Our framework fully considers

the temporal correlative information to obtain the effective

representations which significantly improve the clustering

performance. Further, our model is trained in an unsuper-

vised scenario without a high labeling cost.

Finally, we visualize representation learning results using

t-SNE [41] in Fig. 3. We pick the first video sample from

the Keck dataset. We visualize the original data and the

learned representations from five competitive baselines, the

supervised learning classifier, and from our DSAE frame-

work. Different colors represent different clusters. The t-

SNE visualizations of these five baselines are consistent

with the clustering visualization in Fig. 2. The SSC and

Table II: Supervised method v.s. our model

Methods
MAD Keck Weiz

ACC NMI ACC NMI ACC NMI

Supervised 0.3976 0.4835 0.3855 0.4349 0.5081 0.5942
Ours 0.5548 0.7734 0.5753 0.7407 0.6199 0.7879

Table III: Ablation study on Keck dataset

S-to-M AE Short-En Long-En Short-De Long-De ACC NMI

× � � � � 0.5233 0.7287
� × � � � 0.2161 0.2170
� � × � � 0.4718 0.7170
� � � × � 0.5542 0.7324
� � � � × 0.5376 0.7280

� × × � � 0.3603 0.4891
� � � × × 0.5263 0.7364
� × � × � 0.2219 0.2279
� � × � × 0.4849 0.7288

� � � � � 0.5753 0.7407

OSC cannot effectively learn the discriminative features.

They have many fragments in clusters. The three most

competitive methods, TSC, TSS and LTS, obtain much better

results. They have fewer fragments but the cluster boundaries

are not accurate compared with the ground truth. Also,

we notice that some representations belonging to different

segments are still gathered into one segment, which reduces

the clustering performance. The representation derived from

the supervised classifier is also not discriminative enough

for clustering. Our model achieves the most reasonable and

promising results.

E. Ablation Study

The ablations on the Keck dataset are shown in Table III.

“S-to-M AE”, “En” and “De” represent simple-to-multiple

auto-encoder, encoding and decoding, respectively. “Short”

and “Long” denote the short-distance and long-distance

constraints, respectively. We conclude that S-to-M AE is

an effective basic framework. The short-distance constraints

play a dominant role during the learning process, while the

long-distance constraints further improve the performance

significantly which are also indispensable components. On

the other view, the encoding constraints guide the learning

process directly and provide dramatic performance improve-

ment; while the decoding constraints implicitly direct the

model to make further improvement. Our complete model

achieves the best performance via all the proposed modules

collaboratively working together.

V. CONCLUSIONS

We propose a novel Dual-Side Auto-Encoder (DSAE)

framework for unsupervised high-dimensional time series

segmentation. A single-to-multiple auto-encoder is applied

for capturing temporal structural information. A long-short

constraint is deployed on the encoder side to explicitly guide

the learning process. Moreover, the long-short constraint

is also utilized on the decoder side to implicitly direct
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the representation learning. Experiments on six real-world

datasets illustrate the model effectiveness. An extensive ab-

lation proves the indispensability of each model component.
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