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Abstract—Aspect-based sentiment classification aims to pre-
dict sentimental polarities of one or multiple aspects in texts.
As texts always contain a large proportion of task-irrelevant
words, accurate alignment between aspects and their sentimental
descriptions is the most crucial and challenging step. State-of-
the-art approaches are mainly based on word-level attention
learned from recurrent neural network variants (e.g., LSTM)
or graph neural networks. From another view, these methods
essentially weight and aggregate all possible alignments. How-
ever, this mechanism heavily relies on large-scale supervision
training: without enough labels, it could easily overfit with
difficulty in generalization. To address this challenge, we propose
SentRL, a reinforcement learning-based framework for aspect-
based sentiment classification. In this framework, input texts are
transformed into their dependency graphs. Then, an agent is
deployed to walk on the graphs, explores paths from target aspect
nodes to their potential sentimental regions, and differentiates
the effectiveness of different paths. By limiting the agent’s
exploration budget, our method encourages the agent to skip
task-irrelevant information and focus on the most effective paths
for alignment purpose. Our method considerably reduces the
impact of task-irrelevant words and improves generalization
performance. Compared with competitive baseline methods, our
approach achieves the highest performance on public benchmark
datasets with up to 3.7% improvement.

Index Terms—Natural Language Processing, Sentiment Clas-
sification, Reinforcement Learning

I. INTRODUCTION

The goal of aspect-based (or aspect-level) sentiment clas-
sification is to predict the sentiment polarities of individual
aspects. As shown in Figure 1, given a sentence I like this
computer but do not like the screen, the sentiment of the
aspect computer is positive because of like. Meanwhile, the
sentiment of the aspect screen is negative for do not like.
Compared with conventional sentiment classification task,
aspect-level scenario is a more fine-grained and challenging
task, where the core problem is to correctly align aspects
with their sentiment descriptions. State-of-the-art methods rely
on supervision signals to automatically learn such alignment.
By leveraging textual context and word-level attention learned
from deep models [1], [2], existing methods have made great
progress on discovering aspect-specific sentimental statements.

Meanwhile, the existing methods could suffer serious over-
fitting problems, as natural language inevitably includes a large
proportion of task-irrelevant texts, or noise from the perspec-
tive of machine learning. Ideally, with a sufficient amount of
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Fig. 1. Dependency graph of a given sentence. Blue words are the aspects
(i.e., computer and screen). Green and red are positive and negative sentiment
respectively. The dependency graph effectively reduces the distances between
aspects and sentimental descriptions and avoids polysemy words (e.g., like).
In our approach, an agent is deployed to walk from the aspect word to the
sentimental regions, which avoids task-irrelevant information and achieves
more effective and efficient performance.

training labels, the existing methods could effectively contain
the negative impact of such task-irrelevant information. In
practice, because of the high variance in language expression,
it is costly to collect a large number of task-specific labels,
and it is difficult to guarantee the expected label sufficiency.
With limited labels, the existing approaches could easily
include task-irrelevant information into decision processes,
overfit training data, and end up with inferior generalization
performance to unseen data.

To effectively contain the impact from task-irrelevant infor-
mation, we propose SentRL, a reinforcement learning based
framework for aspect-level sentiment classification. In our
approach, input texts are firstly transformed into graph objects
(e.g., dependency graphs [3]), where nodes are words and
edges indicate syntactic dependencies/relations between them.
Next, we deploy a policy-based agent to discover aspect-
related sentiment descriptions in the graphs. This agent is
geared with a language understanding module so that it is
able to update exploration states and make sentiment decisions
for individual aspects. Unlike existing methods that aggregate
potential sentiment information from all possible textual con-
texts or words, our agent strives to leverage the most relevant
exploration paths under a limited budget. This strategy not
only requires the agent to focus on the most effective paths
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Fig. 2. Framework of our SentRL method. A dependency graph is first obtained. The related sentiment clues could be more close in dependency graph
compared with the original sentence space. An agent starts from an aspect node and walk though the graph edges. The walk direction is determined by a
policy network which utilizes the current walk state and the direction candidates for making the decision. A semantic understanding module is used to update
path states and a sentiment classifier is designed to have the final sentiment prediction based on the walk state.

but also encourages the agent to skip task-irrelevant regions.
Using standard back-propagation methods, the policy network
and the language understanding module are jointly trained.
From public benchmark datasets, we observe our method could
achieve up to 3.6% improvement compared with competitive
state-of-the-art methods. The main contributions of our work
are listed below.
• A novel reinforcement learning framework for aspect-

based sentiment classification is proposed. It accurately
pinpoints the most effective path between sentiment de-
scriptions and the target aspects, and effectively avoids
the impact of the task-irrelevant regions.

• A policy network is developed to provide an agent with
exploration guidance. This network iteratively provides
suggestions on the next-hop selection. In particular, the
framework is permutation invariant and guarantees the
consistency and reliability of the model.

• A language understanding module is developed to help
an agent “remember” its exploration history and make the
final sentiment prediction.

To the best of our knowledge, this is the first work to explore
the effectiveness of reinforcement learning in sentimental
dependency graph and achieves state-of-the-art performance.
We consider our approach is a more human-like mechanism
to explore knowledge and eliminate irrelevant information.

II. RELATED WORK

A. Aspect-based Sentiment Classifications

Aspect-based sentiment classification is to identify senti-
ment polarities of one or more aspects in given texts [4].
Aspects could be either substantial objects (e.g., computer)
or conceptional objects (e.g., service). There are usually
three sentiment categories including positive, neutral, and
negative. Conventional approaches [5] treat input texts as
word sequences, and deploy separate feature extraction mod-
ules as well as classification modules. Deep learning-based
methods [6] take contextual information regarding the word
order into consideration by using LSTM. [7] proposed a deep
memory network which explicitly captures the importance of

each context word. An attention-over-attention module [8]
is proposed to improve the conventional attention strategy.
[9] introduced another attention-over-attention module which
jointly models aspects and sentences explicitly. [10] proposed
a new model which employs a CNN layer to extract salient
features from the transformed word representations. While
such approaches require a large amount of training labels with
non-trivial variance [11] (e.g., long sentences with the majority
of irrelevant contextual words).

B. Sentiment Analysis on Graphs

Syntactic dependency tree [3] is a widely adopted data
structure that encodes syntactic dependencies between words
in input texts. Aspect-based sentiment classification problems
can be cast into node classification problems. Graph structured
data is widely explored for various learning applications [12],
[13]. For instance, [2] deploys graph neural network to aggre-
gate the sentiment information. Transformer based approach
is proposed in [14] to further improve the performance. [15]
explores the grammatical aspect of the sentence and employs
the self-attention mechanism for syntactical learning. [16]
presents a neat and effective multiple CRFs based structured
attention model. However, these models usually perform under
transductive settings, which means the complete sentence or
paragraph should be given.

C. Reinforcement Learning in NLP

Reinforcement Learning (RL) [17] is a promising approach
which automatically and actively explores the environment
and achieves the optimized strategy for final tasks [18]–
[22]. RL has been explored in NLP related interactive tasks
such as text-based games [18] and question answering [19].
DeepPath [23] aims to find reasoning paths and the action
space is the relation space in the knowledge graph. [24]
proposed a novel Hierarchical RL approach which simulating
the steps of analyzing aspect sentiment in a document. [25]
proposed a visual reasoning framework which consists of a
program generator that constructs an explicit representation
of the reasoning process. Unlike previous works, we are the
first to study RL methods that intelligently collect information



from syntactic dependency graphs for aspect-based sentiment
analysis. It is a more challenging task since only limited
supervision information is provided in a large amount of action
space for agent.

III. OUR APPROACH

A. Preliminary

Given the target texts (e.g., a review) c =
{wc

1, w
c
2, w

c
3, ..., w

c
n}, where wc

i represents the i-th word
in c. n is the total number of the words. The target aspect
of c is denoted as ac = {wc

r+1, ..., w
c
r+m}, where r + 1

indicates the start location of the aspect and m is the length
of the aspect. The aspect is either a single-word format (e.g.,
computer, service, and screen) or multiple-word format (e.g.,
HDMI port and sport mode). There could be one or more
aspects in c, and different aspects could have different or
opposite sentimental categories. The goal of aspect-based
sentiment classification is to recover the sentiment polarities
(i.e., positive, neutral, and negative) for each given aspect.

B. Dependency Graph Extraction

Dependency graph is a widely adopted data structure
that encodes syntactic dependencies between words in input
texts. Given a description c, a dependency graph Gc =
(V (Gc), E(Gc)) is extracted from c. V (Gc) indicates all
vertices/nodes in Gc, and each vertice corresponds to a word
in c. E(Gc) denotes the edges of Gc. Each edge in Gc

represents the syntactical relation categories. By deploying the
dependency graph, we transfer the sequential text data into
graph-structured format. In Gc, the long-distance pair of words
in texts could be close in the graph. This provides extra syntac-
tical knowledge and makes down-stream algorithms easier to
pinpoint the sentimental words. We deploy the existing graph
parsing algorithm to obtain the graph.

C. Path Searching via Reinforcement Learning

Compared with other graph learning algorithms (e.g., GCN
and attention), we proposed a RL framework to explore the
most effective aspect-sentiment path on the dependency graph.
First, an agent starts walking from the target aspect node.
Then, a policy network selects the most effective walk based
on the previous walk history and all feasible walk candidates.
Next, a semantic understanding module is deployed to aggre-
gate the path state and a sentiment classifier is used to obtain
the final sentiment prediction. In summary, there are three
components in our framework, 1) A Semantic Understanding
Module which aggregates the comprehensive walk state, 2) A
Policy Network which makes the walk decision, and 3) A
Sentiment Classifier which obtains the final prediction of the
sentiment categories.

D. Semantic Understanding Module

The semantic understanding module aims to provide a
comprehensive state of the walk for 1) allowing the policy
network to make the effective walk action and 2) letting
the sentiment classifier obtain a final prediction. There is a

requirement that the state updating mechanism should make
the walking procedure as a Markov Decision Process (MDP).
The expression is shown below:

P (St+1|S0, A0, ..., St, At) = P (St+1|St, At), (1)

where Si, Ai, and Ri are the state, action, and reward of the
i-th move respectively. Eq. (1) indicates that the path state of
(t+ 1)-th move, St+1, should be only relevant to the current
state St and action At, and irrelevant to earlier states. To this
end, St is required to preserve both the current and all previous
walk information. To achieve this goal, we deploy the general
LSTM structure in our framework, as LSTM and its varieties
have been well validated as an effective way to capture both
the feature and the sequential knowledge in a given sample.
In our model, the function is shown below:

St = LSTM(At, St−1), (2)

where St is the current state, which could also be considered
as the hidden state updated in each loop. At is the node
feature of the corresponding t-th action (i.e., word embedding)
which is walked though by agent in the t-th move. Semantic
understanding module keeps updating St for each walk.

E. Policy Network

The goal of the policy network is to guide the agent to
find the most effective paths in the obtained dependency
graph. Specifically, it is designed to select the action based
on the previous walk path and the next move candidates.
There are two challenges. First, the policy network should
perceive all possible candidates for making the most effective
action. General deep network structure requires consistent data
format as input. While, in Gc, each node could have a different
number of neighbor (1-hop) nodes. Second, the policy network
should be permutation irrelevant to the candidate input.

To this end, we proposed a structural input mechanism.
When the agent has arrived at a node, it obtains all the
connected nodes (including the previously walked nodes and
itself). We assume the set of the nodes is V = {v1, v2, ..., vm},
where m is the number of all candidate nodes around i-
th nodes. We concatenate current state St with each node
si, i = {1, 2, ...,m} and obtain a vector. We put the vector
into the policy network to get a candidate score of the node
vi. The expression is formulated as shown below:

si = policy(cat(St, vi)), i = {1, 2, ...,m}, (3)

where cat(·) indicates the concatenation operation. This strat-
egy considers the probability of each candidate separately
and it relaxes the input inconsistency challenge while still
preserves the local structural information of the dependency
graph. When the scores of all candidates are obtained, the
agent would go to the node which has the highest score. The
function is shown below:

a = arg maxi={1,2,...,m}(si). (4)

A consistent walk length is set to stop the walk process. In
our experiments, we set walk length of 3 which is effective



TABLE I
STATISTICS OF THE EVALUATION DATASETS

Dataset Split Positive neutral Negative

Lap14 Training 994 464 870
Testing 341 169 128

Twitter Training 1561 3127 1560
Testing 173 346 173

Rest14 Training 2164 637 807
Testing 728 196 196

Rest15 Training 912 36 256
Testing 326 34 182

Rest16 Training 1240 69 439
Testing 469 30 117

enough for achieving high performance. Details are discussed
in Section IV-C. Other potential solutions such as setting up a
stop action to terminate the walk process, while we found the
current strategy is the most efficient one with less complicity.

F. Sentiment Classifier

After the agent finishes a path, a sentiment classifier is
deployed to obtain the final sentiment prediction:

p = δ(WpSt + bp). (5)

Eq. (5) is a single layer network, where δ(·) is the non-
linear activation. In our implementation, we deploy Softmax
activation to predict one polarity from the candidate pool. Wp

is the weight and bp is the bias.

G. Reward

The reward provides the information which directly guides
the training procedure. Conventional RL frameworks have a
clear reward design for each step. However, in our framework,
the ultimate goal is high classification performance which re-
lays on multiple modules. To this end, we directly consider the
correct prediction as the reward for optimizing all the modules.
We deploy Mean Squared Error (MSE) as the accuracy reward
and the function is shown below:

racc = −‖y − p‖F
2, (6)

where racc is the accuracy reward, y is the ground truth label.
racc would only be calculated once after the walk is finished.
It is a straightforward yet effective reward. In the training
procedure, all the three modules are simultaneously optimized
to achieve the best performance. Other evaluation metrics
(e.g., Cross Entropy) could also be deployed. We empirically
evaluate different metrics, and we found most metrics are
effective while MSE achieves the best performance.

H. Implementation & Optimization

We use a 2-layer fully-connected (FC) neural network to
parameterize the policy network that maps the state vector St

to a probability distribution over all possible actions. ReLU
activation is deployed in the first layer while no activation in
the second layer. However, to obtain a smooth score across
different candidates, the sigmoid function is deployed across
all actions. In the optimization procedure, some strategies are
used to improve its efficiency and effectiveness. For the policy

network, simply choosing the candidate with the highest score
is a non-differentiable sampling strategy making it infeasible to
calculate the weight gradients. Gumbel Softmax [26] employs
a continuous distribution to approximate a non-differentiable
sample. In this way, we can have a one-hot vector as the output
of the agent while still preserving the parameter gradients. The
core functions of Gumbel Softmax is shown as follow:

zi =
exp((log(πi) + gi)/τ)

Σk
j=1exp((log(πj) + gj)/τ)

, (7)

where gi are i.i.d samples drawn from Gumbel(0, 1) dis-
tribution, πi are the class probabilities, zi are the generated
samples, τ is the temperature parameter. The smaller the τ ,
the final result is more close to a one-hot vector. The output
would be a one-hot vector, while the gradients are calculated
from the Gumbel Softmax. For the testing process, since we
do not need to calculate the gradients and add diversity, we
simply use argmax(·) function to get the one-hot vector.

IV. EXPERIMENT

A. Datasets

We utilized 5 public datasets. Table I illustrates their
statistical information. Specifically, LAP14 [27] includes re-
views of laptops from users. Aspects are the characteristics
of computers (e.g., screen, speed). TWITTER [1] contains
mentions from public available tweets. The aspects are diverse
including celebrities (e.g., Bill Gates)), and companies (e.g.,
Google). REST14 [27] focuses on restaurants’ reviews. The
aspects include the flavor, style, service, and the environ-
ment. The annotations for aspect terms occurring in the
sentences. REST15 [28] has similar aspects compared with
[27], while it includes reviews for laptops, restaurants, and
hotels. REST16 [29] contains more comprehensive reviews
on restaurants, which are used to help companies to measure
satisfaction and improve their products.

B. Baselines

We consider the following state-of-the-art approaches as
baselines. SVM [5] is a conventional classification method,
and traditional feature extraction pipeline and an in-house
sequence tagger is used to detect aspect terms. LSTM [6]
proposes an extension on general LSTM framework. It incor-
porates target information to fully explore the relevant context
words. MemNet [7] uses external memories and a multi-hop
architecture to learn the importance of context words, where
input texts are modeled as naturally-ordered word sequences.
AOA [9] introduces an attention-over-attention (AOA) strategy
to the sentiment classification. It takes both text-to-aspect and
aspect-to-text projections into consideration. IAN [8] applies
an attention network to both aspects and context to learn the
sentiment representations. TNet-LF [10] introduces a Target-
Specific Transformation (TST) component to get the context
information of the aspect text. Then it proposes Context-
Preserving Transformation (CPT) layers to learn the abstract
features. ASGCN [2] considers the contextual information by



TABLE II
SENTIMENT CLASSIFICATION PERFORMANCE OVER PUBLIC BENCHMARK DATASETS

Methods Lap14 Rest14 Rest15 Rest16 Twitter
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

SVM [5] 70.49 N/A 80.16 N/A N/A N/A N/A N/A 63.40 63.30
LSTM [6] 69.28 63.09 78.13 67.47 77.31 55.17 86.80 63.88 69.56 67.70

MemNet [7] 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99 71.48 69.90
AOA [9] 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21 72.30 70.20
IAN [8] 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21 72.50 70.81

TNet-LF [10] 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43 72.98 71.43
ASCNN [2] 72.62 66.72 81.73 73.10 78.47 58.90 87.39 64.56 71.05 69.45

ASGCN-DT [2] 74.14 69.24 80.86 72.19 79.34 60.78 88.69 66.64 71.53 69.68
ASGCN-DG [2] 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 72.15 70.40

SentRL 75.55 71.48 82.05 73.40 80.07 65.54 87.82 71.17 73.12 71.64
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Fig. 3. t-SNE visualization of the learned sentimental representations, where
(a) is ASGCN method and (b) is our approach. Different color denotes
different sentimental categories including positive, neutral, and negative.

2 3 4 5
Walk Length

78

79

80

81

82

83

A
cc

ur
ac

y 
(%

)

2 3 4 5
Walk Length

68

70

72

74

F
1 

(%
)

Fig. 4. Performance with different walk length in the dependent graph.

utilizing dependency graphs, and a GCN and an attention
mechanism are used to learn sentimental representations.

In the experiments, we follow the commonly adopted exper-
imental setting described in [7]. GloVe word embedding [30]
is used to extract the initial representations which is further
fine-tuned by a bidirectional LSTM [2]. ADAM optimizer is
used to train SentRL with a learning rate of 0.0005. We employ
the same evaluation metrics discussed in [2], where accuracy
(ACC) and macro-F1 (F1) are adopted. Dependency graphs
are obtained from spcCy1.

C. Performance Analysis

The overview performance is reported in Table II. We
observe that SentRL outperforms all the baseline methods in
4 out of 5 cases in terms of accuracy (ACC). In terms of
macro-F1, SentRL outperforms in all the cases, with up to
3.7% improvement over the best baseline method.

We visualize the learned sentimental representations and
compare it with the ones generated from the second best

1https://spacy.io/

TABLE III
SENTIMENT CLASSIFICATION PERFORMANCE BASED ON RANDOM WALK

Walk Lap14 Rest14 Rest15 Rest16 Twitter
Length ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

1 65.88 60.05 74.37 61.51 74.11 51.59 84.30 61.13 67.34 63.86
2 67.47 63.28 75.44 64.82 74.76 53.15 84.44 63.29 67.34 65.17
3 70.42 65.10 76.03 65.89 74.91 53.85 84.98 64.12 67.93 66.12
4 70.51 65.43 76.15 66.28 75.61 54.04 85.15 65.00 68.14 66.82

Ours 75.55 71.48 82.05 73.40 80.07 65.54 87.82 71.17 73.12 71.64

model, ASGCN [2] by t-SNE [31]. As shown in Figure 3,
red, green, and blue dots denote negative, neutral, and positive
sentiments, respectively. We observe that our approach could
better separate different sentiments.

Walk length is another crucial parameter. We evaluated the
model with different walk length (i.e., from 2 to 5) and the
result is shown in Figure 4. Our model achieves the best
performance when walk length is 3. We assume that if walk
length is less than 3, the agent cannot reach to the sentiment
word and the performance decreases significantly. Meanwhile,
if walk length is more than 3, the performance only has slight
decline, and we conjecture this is due to the unnecessary walks
which aggregate extra information.

To demonstrate the effectiveness of the RL module, we
let the agent randomly walk through the dependency graph
while keeping the other modules unchanged. The result is
illustrated in Table III. We observed that when walk length
is 1, the performance significantly drops. However, it is still
higher than random guess. When the walk length increases,
the performance cannot increase consistently. From the results,
we could conclude that 1) our RL approach is effective and
essential, and 2) the aspect node does have biases for different
sentiment polarity, and walking through the dependency graph
could more effectively capture the syntactical knowledge.

We present a case study and visualize traces from aspect
words to their related sentimental words. Three correct predic-
tions and one incorrect prediction are shown in Figure 5, where
words in blue boxes are aspects, grey edges denote syntactic
dependencies between words, and red edges are traces left by
a learned agent. For example, in case 1, the agent starts from
the aspect word food and ends at the word fresh, collecting
necessary information within three hops as expected. If the
policy network believes it is the final word and no extra moves
are required, then it keeps walking to the same word until the
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Fig. 5. A case study demonstrating traces from aspect words to their
related sentimental words. For example, in case 1, the agent trace is
Food→Food→is→fresh. Grey edges denote extracted syntactic dependencies,
and red ones denote traces generated by a learned agent. Cases 1,3,4 are
samples correctly predicted by SentRL, while case 2 is an incorrect prediction.

walk stops. Case 3 and Case 4 illustrate this operation of the
agent. In Case 3, when agent arrived to great and recognized
the sufficiency of the walk and no extra walks are required,
then it keeps walking to the same token. In Case 4, the agent
walks again to the word, terrible, in the last walk.

V. CONCLUSION

In this paper, we propose SentRL, a novel aspect-based
sentiment classification approach via reinforcement learning.
By investigating input texts from their syntactic structures
(e.g., dependency graphs), we are able to effectively reduce
input variance introduced by diverse expressions in natural
languages. On top of the syntactic structures, an agent is
deployed to discover the most effective paths that link aspects
with their sentimental descriptions. By collecting evidences
from the discovered paths, a semantic understanding module
in SentRL learns to make the accurate sentimental classifica-
tion. All the modules in SentRL are simultaneously trained
in an end-to-end fashion. Experimental results illustrate the
high performance of our approach and extensive case studies
demonstrate the effectiveness and efficiency of our model.
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