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Abstract

Few-shot learning aims to enable models gen-
eralize to new categories (query instances) with
only limited labeled samples (support instances)
from each category. Metric-based mechanism is
a promising direction which compares feature em-
beddings via different metrics. However, it al-
ways fail to generalize to unseen domains due to
the considerable domain gap challenge. In this pa-
per, we propose a novel framework, MemREIN,
which considers Memorized, Restitution, and In-
stance Normalization for cross-domain few-shot
learning. Specifically, an instance normalization al-
gorithm is explored to alleviate feature dissimilar-
ity, which provides the initial model generalization
ability. However, naively normalizing the feature
would lose fine-grained discriminative knowledge
between different classes. To this end, a memorized
module is further proposed to separate the most re-
fined knowledge and remember it. Then, a restitu-
tion module is utilized to restitute the discrimina-
tion ability from the learned knowledge. A novel
reverse contrastive learning strategy is proposed to
stabilize the distillation process. Extensive experi-
ments on five popular benchmark datasets demon-
strate that MemREIN well addresses the domain
shift challenge, and significantly improves the per-
formance up to 16.37% compared with state-of-
the-art baselines.

1 Introduction
In recent years, machine learning especially deep learning
methods have made amazing achievements in the field of
computer vision, image classification, semantic segmenta-
tion, etc. However, the high performance heavily relies on
the large amount of well-labeled training data, which pro-
vides comprehensive and diverse samples to cover all corner
cases. Such a huge scale makes it difficult in real practice,
thus leads to a new topic of few-shot learning [Lake et al.,
2015]. Few-shot learning aims to enable models generalize
to new categories (query instances) with only limited labeled
samples (support instances) from each category.

Among existing few-shot learning methods, metric-based
methods have attracted more attention because of their effec-
tiveness and intelligibility. In general, the core idea of this
kind of methods is to make classification based on the simi-
larity between the query images and the support images via
proposed similarity measurements. It usually consists of two
main components: (1) feature encoder and (2) metric func-
tion. Given a task with few labeled images (support set) and
unlabeled images (query set), the visual features are firstly
extracted via the feature encoder and then passed through
the defined metric function to determine the categories of
the query images. The underlying assumption is that both
training and testing are from the same dataset, namely the
same domain. While, when it comes to different domains,
the generalization ability of the metric-based methods greatly
decreases [Chen et al., 2019; Tseng et al., 2020]. However,
such ability to generalize to unseen domains is of great impor-
tance in practice, e.g., expensive human annotation or time-
consuming data collection. As a result, considering the do-
main shift scenario within the few-shot learning has become
an important yet challenging task.

Various unsupervised domain adaptation methods have
been proposed [Yang et al., 2018]. These methods aim
to minimize the domain gap either by learning domain-
invariant representations via representation learning, projec-
tion learning, or adversarial strategies [Long et al., 2015;
Kumar et al., 2018; Tzeng et al., 2017; Kundu et al., 2019].
However, these methods assume that the complete unlabeled
samples from the target domain are accessible while train-
ing. We argue that this assumption may not hold in real situa-
tions, and it could leads to high computational cost in testing
phase. Domain shift problem could be addressed by vari-
ous domain generalization methods [Blanchard et al., 2011;
Muandet et al., 2013]. However, these methods assume that
the source and target domains share the same categories. In
contrast, our goal is to recognize novel categories from the
target domain with only a few (e.g., 1 or 5) of samples se-
lected from novel categories.

As argued above, there are two main challenges in cross-
domain few-shot learning task. (1) How to minimize the dis-
crepancy between the source and target domain. (2) How to
recognize novel/unseen classes with only limited samples.

To this end, we propose a novel MemREIN ap-
proach, which includes Memorized, Restitution, and Instance



Normalization as crucial modules, to “rein” the domain shift
level in few-shot scenario. The core idea of MemREIN is
to enhance the generalization ability while still be able to
balance the discrimination ability for subsequent classifica-
tion. In specific, on the training stage, we first present an in-
stance normalization layer operating on features with respect
to samples at the channel level. This operation aims to re-
serve spatial feature dependency and meanwhile remove the
image-specific features, i.e., alleviate the discrepancy of these
training samples. In this way, the generalization ability across
different samples is enhanced. Then, the filtered out features
are extracted from a residual structure. Normally, the filtered
out features are considered as useless feature which could
be discarded. However, we consider it still contains fine-
grained distinctive knowledge which could be “remembered”
and “restituted”. To this end, we manage to adaptively distill
the long-term discriminative information from them via our
proposed novel memorized approach. Then, such discrimina-
tive information is restituted to the above refined features to
maintain the discrimination ability for subsequent classifica-
tion. A novel reverse contrastive loss constraint in the restitu-
tion step to encourage the better separation of discriminative
features and general features, which ensures the distillation
process. Contributions of our work are summarized as,

• A novel memorized and restitution strategy is proposed
for discriminative information distillation. It is able to
distill the long-term discriminative information from fil-
tered out features to maintain the discrimination ability
of original features for better classification.

• An instance normalization strategy is adopted to allevi-
ate the the discrepancy across training samples, which
reduces the sample-specific features and greatly en-
hances the overall generalization ability across features.

• A novel reverse contrastive loss is proposed to encour-
age the better separation of discriminative and general
features, which is able to ensure the distillation process.

Our MemREIN method is simple yet effective. It is a uni-
versal method that can be applied to various existing metric-
based methods for enhancing their generalization ability to
unseen domains. Extensive experiments demonstrate the ef-
fectiveness of MemREIN, which achieves consistent superior
performance than existing state-of-the-art methods under the
cross-domain setting.

2 Related Work
2.1 Few-shot Classification
Few-shot classification aims to recognize novel classes with
a limited amount of labeled samples. Among these existing
methods, metric-based methods have attracted considerable
attention and achieved promising performance. This kind of
methods usually consists of two components: (1) feature en-
coder and (2) metric function. The feature encoder is used to
extract features from both query and support samples. The
metric function is used to calculate the similarity for clas-
sification. For instance, MatchingNet [Vinyals et al., 2016]
utilizes cosine similarity with an attention Bi-LSTM for clas-
sification and ProtoNet [Snell et al., 2017] applies euclidean

distance for classification. RelationNet [Sung et al., 2018]
uses convolutional neural networks and GNN [Satorras and
Estrach, 2018] uses the graph convolutional framework as
the metric function. Although these methods have achieved
promising performance, they always fail to generalize to un-
seen domains since the distributions among different domains
have huge shifts. Recent work [Chen et al., 2019] reveals that
the performance of existing few-shot learning methods de-
grades significantly under the cross-domain setting. The mo-
tivation of our work aims to enhance the generalization abil-
ity of metric-based few-shot learning methods so that these
methods can better generalize to unseen domains.

2.2 Cross-domain Few-shot Learning
Recently, promoted by the pioneer work [Chen et al., 2019],
cross-domain few-shot learning problem has attracted many
attentions. As an emerging task, work [Chen et al., 2019]
carried out a broader study and introduced a new bench-
mark. Some methods [Tseng et al., 2020; Sun et al., 2021;
Phoo and Hariharan, 2020; Zou et al., 2021; Islam et al.,
2021] have been proposed and achieved promising perfor-
mance under this benchmark. Work [Cai et al., 2020] re-
laxes this setting where a large number of unlabeled target
samples are accessible in the training phase. Most recently,
method ATA [Wang and Deng, 2021] introduced an adversar-
ial task augmentation method to improve the robustness of the
inductive bias under the cross-domain few-shot learning set-
ting. In addition, a noise-enhanced supervised auto-encoder
method was proposed in [Liang et al., 2021] to obtain the
broader variations of the feature distributions to greatly boost
the generalization capability of the model. Paper [Fu et al.,
2021] proposed an effective mix-up module into the meta-
learning mechanism and a novel disentangle module to ob-
tain domain-irrelevant and domain-specific features, which
achieves promising performance. In our work, we propose
a simple yet effective method from the perspective of feature
level, which is a universal method.

3 Method
3.1 Preliminaries
In the few-shot classification problem, a task T is character-
ized as Nw way and Ns shot, which represents the number
of categories and the number of labeled samples in each cat-
egory. At each iteration, the metric-based few-shot learning
method randomly samples Nw categories as a task T , and
then constructs a support set S = {(Xs,Ys)} and a query set
Q = {(Xq,Yq)}, where X and Y represent samples and la-
bels respectively. These two sets are constructed by randomly
selecting Ns and Nq samples for each of the Nw categories.

Once the data is prepared, the feature encoder E first ex-
tracts features of the samples from both support set S and
query set Q. Then, the defined metric function M predicts the
query samples Xq based on three parts: the label of support
samples Ys, encoded query image E(Xq), and the encoded
support images E(Xs), which is formulated as follows:

Ŷq = M(Ys, E(Xq), E(Xs)). (1)

After all, the objective of the metric-based few-shot learn-
ing method is the classification loss of the samples in the
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Figure 1: Framework of our MemREIN method. With instance normalization approach, the sample-specific features F can be reduced, and
then with memorized and restitution approach, the long-term discriminative information can be distilled and restituted to refined features.

query set, which is formulated as follows:

L = Lcls(Yq, Ŷq). (2)

The main difference among existing metric-based few-shot
learning methods lies in the different metric functions. Dif-
ferently, we propose a universal method that can be applied
in all the metric-based few-shot learning methods to achieve
better performance under the cross-domain setting.

In this paper, we tackle the cross-domain few-shot
classification problem. Given a set of few-shot clas-
sification tasks T = {T1, T2, ..., Tn} as a domain
(dataset). At the training stage, given N accessible domains
{T seen

1 , T seen
2 , ..., T seen

N }, we aim to learn a metric-based
few-shot learning model with these seen domains, then the
model can generalize to an unseen domainT unseen.

3.2 MemREIN Method
The core idea of our MemREIN method is to enhance the
generalization ability, including the ability to balance the dis-
crimination of metric-based few-shot learning methods, and
achieve promising performance on arbitrary unseen domains.
The overall framework of our MemREIN method is illus-
trated in Figure 1. MemREIN is method-agnostic that can be
applied to existing metric-based few-shot learning methods to
improve their performance to unseen domains. In addition, it
is a universal framework that can be applied by various neu-
ral networks for different applications, e.g. classification, seg-
mentation. In this paper, we delve into the cross-domain few-
shot learning problem and propose our MemREIN method to
“rein” the domain shift level in few-shot classification.
Instance Normalization
As argued above, images with the same category from differ-
ent domains have large discrepancies in many aspects e.g. ,
image style, color, quality. Generally speaking, the discrep-
ancy between the source domain and the target domain hin-
ders the generalization ability of the model to some extent.

To this end, we reduce the discrepancy cross samples by
instance normalization in our proposed MemREIN method
as follows. Denote the input feature map by F ∈ Rc×h×w

and the output feature map by F̃ ∈ Rc×h×w, where c, h ,w
denote the number of channel, height, width, respectively.

F̃ = IN(F ) = γ

(
F − µ(F )

σ(F )

)
+ β, (3)

where µ(·) and σ(·) denote the mean and standard deviation
calculated at the channel level for each sample, γ ∈ Rc and

β ∈ Rc are two trainable parameters. Instance normaliza-
tion was originally used in style transfer [Dumoulin et al.,
2016], which is helpful to enhance the generalization abil-
ity by reducing the feature dissimilarity. It can remove in-
stance/sample specific features out of the input, which makes
more general features remained.

However, instance normalization inevitably removes some
discriminative information from original feature maps [Jin et
al., 2020], which weakens the extracted features discrimi-
nation ability of extracted features. To address this emerg-
ing problem, we propose a memorized restitution approach
to distill the discriminative information from the filtered out
features and then restitute it as the final output feature maps.
Memorized Restitution
As discussed above, in order to maintain the discrimination
ability of the refined features, we propose a following mem-
orized restitution approach to distill discriminative informa-
tion. We first obtain the filtered out feature R via a residual
structure, which is defined as follows:

R = F − F̃ , (4)

where R ∈ Rc×h×w, denoting the features that we have
filtered out via the instance normalization operation. Since
instance normalization operation will inevitably remove dis-
criminative information from the original features. Hence,
there exist discriminative features that we need to distill and
purify from the residual feature R, in order to maintain the
discrimination ability of extracted features.

At the training stage, given the feature map R at each it-
eration (we omit the subscript of feature map R for brevity),
we assume R consists of two parts: D ∈ Rc×h×w with rel-
atively more discriminative information, and G ∈ Rc×h×w

with relatively more general information, which is defined as
follows: {

D(k, :, :) = αkR(k, :, :),

G(k, :, :) = (1− αk)R(k, :, :),
(5)

where k denotes the kth channel of the feature map, αk de-
notes the learnable attention parameters to split the residual
feature map R. Note that we split the residual feature map R
at the channel level.

Then, the attention vector α = [α1, α2, ..., αc] is derived
by SE-like channel attention [Hu et al., 2018] as follows:

α = δ(W2η(W1avepooling(R))), (6)



where avepooling is the average pooling layer, W1 and W2

are parameters to be learned, δ and η are the ReLU activation
function and sigmoid activation function, respectively.

Since there are limited labeled samples under the few-shot
learning framework, it is highly possible that the model would
overfit. Thus we further propose a memorized mechanism
with a memory vector M (l) ∈ Rc to store the long-term fea-
ture maps D, which is defined as follows:

M (l) = [M
(l)
1 , ...,M

(l)
k , ...,M (l)

c ],

M
(l+1)
k = D(l)(k, :, :),

(7)

where M
(l)
k ∈ Rh×w, (l) represents the lth iteration, k de-

notes the kth channel. At the lth iteration, we concatenate
the feature map D to the memory bank at the channel level,
and update D as follows:

D(k, :, :) = maxpooling(concat(M
(l)
k , D(k, :, :))), (8)

where concat represents the concatenation operation,
maxpooling represents the max pooling layer.

Once we obtain the updated feature map D, we restitute it
to refined feature F̃ as the final output F̃+ of our proposed
MemREIN method, and we also restitute the relatively unim-
portant feature map G with feature F̃ as the “contaminated”
feature F̃− for following loss optimization as follows:

F̃+ = F̃ +D, F̃− = F̃ +G. (9)

Reverse Contrastive Loss
Apart from the conventional cross-entropy loss defined in
Equation 2, we also propose a novel reverse contrastive loss
Lrcl to promote the disentanglement of feature D and fea-
ture G. It consists of two parts: L+

rcl and L−
rcl, e.g. , Lrcl =

L+
rcl+L−

rcl. Given a mini-batch Xb = {X1, ...,XN} contains
N samples at the training phase, we first randomly select one
anchor sample referred as Xa, and then we denote samples
with the same category as the positive samples Xpos, samples
with different categories as the negative samples Xneg . Note
that the corresponding features of these samples are denoted
with their subscripts such as F̃a, F̃pos, and F̃neg in the fol-
lowing paragraphs.

We first reshape features F̃+ and F̃− to the size of Rchw×1

and then pass them through one fully-connected layer follow-
ing the softmax function to obtain the feature vectors f̃+

and f̃−, which is defined as follows. Note that these two vec-
tors have the same size of ∈ RK×1.

f̃+ = softmax
(
W+reshape(F̃+)

)
, (10)

f̃− = softmax
(
W−reshape(F̃−)

)
, (11)

where W+ and W− are trainable parameters with the same
size of RK×chw, K is the number of classes in the few-shot
classification task. Then, the reverse contrastive loss is de-
fined as follows:

L+
rcl = −E

log exp(f̃+
a
⊤
f̃+
pos)∑

Xpos∈X exp(f̃+
a
⊤
f̃+
neg)

 , (12)

L−
rcl = −E

log ∑
Xneg∈X exp(f̃−

a
⊤
f̃−
neg)

exp(f̃−
a
⊤
f̃−
pos)

 . (13)

The goal of our proposed reverse contrastive loss is to pro-
mote the disentanglement of feature D and feature G, where
feature D contains more discriminative information and G
contains more general information. Combining feature D

with the refined feature F̃ , defined in Equation 9, results in
better discrimination capability of feature F̃+, in other words,
the sample features with same category are closer and those
with different identities are farther apart. Therefore, we pro-
pose L+

rcl to promote the features of positive samples f̃+
pos

gather closer and separate the features of negative samples
f̃+
neg from the anchor feature as well. On the other hand,

combining feature G with the refined feature F̃ results in de-
creasing the discrimination capability, which means the fea-
ture F̃− is more general that not capable of distinguishing
samples with the same category correctly. Therefore, we pro-
pose L−

rcl to separate the the features of positive samples f̃−
pos

from both features with negative samples f̃−
neg and the anchor

feature f̃−
a . The whole objective loss is defined as follows:

L = Lcls + λ(L+
rcl + L−

rcl), (14)
where λ is a hyper-parameter to control the balance of these
two terms in the training phase.

4 Experiments
4.1 Experimental Setup
Baselines: We make extensive experiments on three ex-
isting metric-based few-shot learning methods: Match-
ingNet [Vinyals et al., 2016], RelationNet [Sung et al., 2018],
and GNN [Satorras and Estrach, 2018]. We compare our pro-
posed method with following existing cross-domain few-shot
learning methods: FT [Tseng et al., 2020], LRP [Sun et al.,
2021], and ATA [Wang and Deng, 2021] to demonstrate the
advantages of our method. More quantitative results and vi-
sualizations are provided in the supplementary material.

Datesets: We conduct experiments on five public datasets
that are widely used for few-shot classification task: mini-
ImageNet [Ravi and Larochelle, 2016], CUB [Wah et al.,
2011], Cars [Krause et al., 2013], Places [Zhou et al., 2017],
and Plantae [Van Horn et al., 2018].

Setting: We take the exactly same leave-one-out setting
which is applied in other baselines. Specifically, we select
one dataset among CUB, Cars, Places, and Plantae as the tar-
get domain for testing, and using the remaining three datasets
along with dataset mini-ImageNet as the source domains for
training. This setting is challenging since there are multiple
source domains with only one target domain, which results in
much larger domain shift.

Implementation details: we adopt the ResNet-10 [He et



5-way 1-shot Classification Accuracy (%)

CUB Cars Places Plantae

MNet [Vinyals et al., 2016] 37.90 ± 0.55% 28.96 ± 0.45% 49.01 ± 0.65% 33.21 ± 0.51%
MNet+LFT [Tseng et al., 2020] 43.29 ± 0.59% 30.62 ± 0.48% 52.51 ± 0.67% 35.12 ± 0.54%
MNet+MemREIN (Ours) 46.37 ± 0.50% 35.65 ± 0.45% 54.92 ± 0.64% 38.82 ± 0.48%
RNet [Sung et al., 2018] 44.33 ± 0.59% 29.53 ± 0.45% 47.76 ± 0.63% 33.76 ± 0.52%
RNet+LFT [Tseng et al., 2020] 48.38 ± 0.63% 32.21 ± 0.51% 50.74 ± 0.66% 35.00 ± 0.52%
RNet+MemREIN (Ours) 52.02 ± 0.52% 36.38 ± 0.38% 54.82 ± 0.57% 36.74 ± 0.45%
GNN [Satorras and Estrach, 2018] 49.46 ± 0.73% 32.95 ± 0.56% 51.39 ± 0.80% 37.15 ± 0.60%
GNN+LFT [Tseng et al., 2020] 51.51 ± 0.80% 34.12 ± 0.63% 56.31 ± 0.80% 42.09 ± 0.68%
GNN+MemREIN (Ours) 54.26 ± 0.62% 37.55 ± 0.50% 59.98 ± 0.64% 45.69 ± 0.64%

5-way 5-shot Classification Accuracy (%)

CUB Cars Places Plantae

MNet [Vinyals et al., 2016] 51.92 ± 0.80% 39.87 ± 0.51% 61.82 ± 0.57% 47.29 ± 0.51%
MNet+LFT [Tseng et al., 2020] 61.41 ± 0.57% 43.08 ± 0.55% 64.99 ± 0.59% 48.32 ± 0.57%
MNet+MemREIN (Ours) 67.31 ± 0.51% 47.36 ± 0.48% 68.14 ± 0.58% 52.28 ± 0.52%
RNet [Sung et al., 2018] 62.13 ± 0.74% 40.64 ± 0.54% 64.34 ± 0.57% 46.29 ± 0.56%
RNet+LFT [Tseng et al., 2020] 64.99 ± 0.54% 43.44 ± 0.59% 67.35 ± 0.54% 50.39 ± 0.52%
RNet+MemREIN (Ours) 68.39 ± 0.48% 46.92 ± 0.50% 69.87 ± 0.54% 58.64 ± 0.50%
GNN [Satorras and Estrach, 2018] 69.26 ± 0.68% 48.91 ± 0.67% 72.59 ± 0.67% 58.36 ± 0.68%
GNN+LFT [Tseng et al., 2020] 73.11 ± 0.68% 49.88 ± 0.67% 77.05 ± 0.65% 58.84 ± 0.66%
GNN+MemREIN (Ours) 77.54 ± 0.62% 56.78 ± 0.66% 78.84 ± 0.66% 65.44 ± 0.64%

Table 1: Classification accuracy (%) of 5-way 1/5-shot tasks under the leave-one-out setting.

5-way 5-shot Classification Accuracy (%)

GNN+MemREIN CUB Cars

λ = 0.01 77.02 ± 0.62% 56.12 ± 0.66%
λ = 0.1 77.54 ± 0.62% 56.78 ± 0.66%
λ = 0.5 77.34 ± 0.62% 56.66 ± 0.66%
λ = 1 76.78 ± 0.64% 56.22 ± 0.66%

Table 2: Performance study on the hyper-parameter λ.

al., 2016] as the backbone network for our feature encoder E.
We insert our proposed MemREIN method after the last batch
normalization layer of all the residual blocks in the feature
encoder E at the training stage. Instead of optimizing from
the scratch, we apply a strategy that pre-trains the feature ex-
tractor by minimizing the standard cross-entropy classifica-
tion loss on the 64 training categories from the dataset mini-
ImageNet and this strategy is also applied in all the baselines.
In the training phase, we set λ = 0.1 and train 1000 trials
for all the methods. In each trial, we randomly sample Nw

categories with Ns randomly selected images for each sup-
port set, and 16 images for the query set. We use the Adam
optimizer with the learning rate 0.001.

4.2 Experimental Results
Quantitative Results
Table 1 shows the results under the leave-one-out setting. We
first select out one dataset as the unseen domain for testing
and use the remaining three datasets as well as the dataset
mini-ImageNet for training since we already use the dataset
mini-ImageNet for pre-training. Note that the baseline [2020]
has two different training strategies, one is the “learn to learn”
strategy and another is using fixed hyper-parameters. We con-
sider the better results for comparison here, which is denoted
as “+LFT” in the Table 1. The results demonstrate that our
proposed MemREIN method can greatly improve the perfor-
mance of all three metric-based few-shot learning methods,

(a) GNN (b) +IN (c) +MemREIN

(d) GNN (e) +IN (f) +MemREIN

Figure 2: t-SNE visualization of features extracted by encoder.

which reflects that our method has the capability of mitigat-
ing the domain gap problem. In addition, results show that
our method consistently outperforms the “+LFT” method,
which validates that our proposed method can better capture
the variation of feature distributions across multiple domains
than the “+LFT” method, thus the generalization ability of
extracted features are better enhanced.

Qualitative Results
As illustrated in Figure 2, we employ the t-SNE algorithm to
visualize features that obtained by the feature encoder “be-
fore/within/after” our MemREIN method, where each color
represents one class. We take the GNN baseline under the
leave-one-out setting on the dataset CUB as the example. We
randomly select 5 categories with 60 samples of each cate-
gory in the testing spilt of the dataset CUB. The first col-



5-way 5-shot Classification Accuracy (%)

Variant ID Method CUB Cars Places Plantae

1 GNN [Satorras and Estrach, 2018] 69.26 ± 0.68% 48.91 ± 0.67% 72.59 ± 0.67% 58.36 ± 0.68%
2 GNN+IN 67.34 ± 0.66% 42.76 ± 0.75% 67.82 ± 0.73% 54.04 ± 0.69%
3 GNN+MemREIN 77.54 ± 0.62% 56.78 ± 0.66% 78.84 ± 0.66% 65.44 ± 0.64%
4 w/o L−

rcl 75.38 ± 0.63% 55.34 ± 0.72% 78.03 ± 0.68% 65.22 ± 0.64%
5 w/o L+

rcl 73.02 ± 0.62% 51.45 ± 0.64% 73.26 ± 0.66% 62.22 ± 0.64%
6 GNN+MemREIN w/o MB 75.98 ± 0.62% 54.64 ± 0.66% 74.86 ± 0.68% 64.08 ± 0.68%
7 GNN+MemREIN (D&G) 76.02 ± 0.66% 55.26 ± 0.69% 78.08 ± 0.66% 64.84 ± 0.68%

Table 3: Ablation study on our method. “GNN+IN” indicates that we only employ the instance normalization strategy, “w/o L−
rcl” indicates

that we remove the L−
rcl term, and “w/o L+

rcl” indicates that we remove the L+
rcl term, “GNN+MemREIN w/o MB” represents that we

remove memory bank and directly use the feature map D, and “GNN+MemREIN (D&G)” represents that the memory bank is operated both
on feature map D and G (not shared).

5-shot Classification Accuracy (%)

2-way 5-way 10-way 20-way

MNet [Vinyals et al., 2016] 78.46 ± 0.78% 51.92 ± 0.80% 38.22 ± 0.38% 26.17 ± 0.24%
MNet+LFT [Tseng et al., 2020] 83.88 ± 0.72% 61.41 ± 0.57% 45.69 ± 0.39% 32.81 ± 0.23%
MNet+MemREIN (Ours) 88.68 ± 0.68% 67.31 ± 0.51% 49.22 ± 0.34% 33.99 ± 0.22%
RNet [Sung et al., 2018] 84.25 ± 0.72% 62.13 ± 0.74% 47.15 ± 0.40% 34.52 ± 0.24%
RNet+LFT [Tseng et al., 2020] 85.44 ± 0.72% 64.99 ± 0.54% 49.90 ± 0.40% 37.20 ± 0.25%
RNet+MemREIN (Ours) 89.12 ± 0.66% 68.39 ± 0.48% 52.85 ± 0.32% 42.82 ± 0.20%

Table 4: Classification Accuracy (%) of our proposed method with different Nw. We consider the CUB dataset as the unseen domain under
the leave-one-out setting.

umn indicates two examples of the features from conventional
GNN baseline, The second column indicates the features that
only applied the instance normalization operation, and the
third column indicates the features that applied our proposed
MemREIN method. As shown in the first column, there exists
several rough clusters but the boundaries are unclear. After
instance normalization, the overall model generalization abil-
ity of features is enhanced. In comparison with the first col-
umn and the third column, the features learned by our method
are more clustered and separable, which validates the effec-
tiveness of our novel memorized restitution approach.

Performance Study of λ
We carry out performance study on the hyper-parameter λ.
We take our method under the leave-one-out setting (5-way
5-shot) and dataset CUB and Cars as the example. We set
four different values λ = {0.01, 0.1, 0.5, 1} and the results
are shown in Table 2. It can be observed that when setting
λ = 0.1, it can achieve the best performance.

Ablation Study
We carry out ablation studies of different components in our
proposed method. We compare with the GNN baseline un-
der the leave-one-out setting (5-way 5-shot) and results are
shown in Table 3. Comparing the results of Variant 1 and 2, it
indicates that only applying the instance normalization oper-
ation results in the decrease of the accuracy. It is reasonable
because the instance normalization operation will inevitably
remove some discriminative useful information. In compari-
son with Variant 3 and 6, it validates the effectiveness of em-
ploying the memory bank on feature D. Comparing Variant
3, 6, and 7, it indicates that when employing memory bank
on feature G, it would cause performance decrease. Empiri-
cally, when applying the memory bank on the feature D and
directly using feature G, it can achieve the best performance.

Different Numbers of Ways
We consider a more practical situation that Nw may be differ-
ent from that at the training stage. It also reflects the general-
ization ability of the model and results are shown in Table 4.
Note that model GNN requires the number of ways to be the
same while the training and testing, thus we evaluate with
method MatchingNet and RelationNet (MNet and RNet for
short). The model is trained on the datasets mini-ImageNet,
Cars, Places, and Plantae and evaluated on the dataset CUB
with different number of ways Nw. The results indicate that
our proposed method are still capable of improving the gen-
eralization ability to the unseen domain with various numbers
of ways. In addition, our proposed method consistently out-
performs the baseline that has considered the domain-shift
issue, which validates the superiority of our method.

5 Conclusion
In this paper, we investigated the cross-domain few-shot clas-
sification problem where exists the domain gap issue. We
propose a novel framework, MemREIN, which considers
Memorized, Restitution, and Instance Normalization to ad-
dress this issue. We first alleviate feature dissimilarity across
sample features via an instance normalization algorithm to
enhance the overall generalization ability. In order to avoid
the loss of fine-grained discriminative knowledge between
different classes, a memorized restitution approach is fur-
ther proposed to adaptively remember the long-term refined
knowledge and restitute the discrimination ability. Finally,
A novel reverse contrastive learning strategy is proposed to
stabilize the distillation process. Extensive experiments on
five popular benchmark datasets demonstrate that MemREIN
well addresses the domain shift challenge, and significantly
improves the performance up to 16.37% compared with state-
of-the-art baselines.
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