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ABSTRACT

Domain generalization aims to learn a model that generalizes to

unseen target domains from multiple source domains. Various ap-

proaches have been proposed to address this problem by adversarial

learning, meta-learning, and data augmentation. However, those

methods have no guarantee for target domain generalization. Mo-

tivated by an observation that the class-irrelevant information of

sample in the form of semantic variation would lead to negative

transfer, we propose to linearly disentangle the variation out of

sample in feature space and impose a novel class decorrelation

regularization on the feature variation. By doing so, the model

would focus on the high-level categorical concept for model pre-

diction while ignoring the misleading clue from other variations

(including domain changes). As a result, we achieve state-of-the-art

performances over all of widely used domain generalization bench-

marks, namely PACS, VLCS, Office-Home, and Digits-DGwith large

margins. Further analysis reveals our method could learn a better

domain-invariant representation, and decorrelated feature variation

could successfully capture semantic meaning.
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1 INTRODUCTION

Deep learning has made significant progress in various fields in the

past few years, such as computer vision [9, 19, 20, 26] and natural

language processing [3, 14]. The experimental setup of deep learn-

ing assumes that data is independent and identically distributed.

In other words, training and testing data are drawn from the same

data distribution. However, this assumption does not always hold

in reality, as the distribution of training and testing data may differ

drastically. In this case, deep models often perform poorly due to

the domain distribution shift. Considering the expensiveness and

difficulty of collecting data from various distributions, enhancing

the generalization ability of deep models is important, and there-

fore Domain Generalization (DG) is proposed to learn generalizable

models by leveraging information from single or multiple source

domains as shown in Figure 1.

Various methods for domain generalization have been intro-

duced. Many existing DG methods aim at learning a source domain-

invariant feature representation such as adversarial learning [18, 21]

and Explicit feature alignment [37]. However, without access to

any target domain data, the model learned with domain alignment

can still overfit the source domains. Alternatively, meta-learning

methods [1, 16] have received lots of attention by simulating the

domain shift with held-out source domain during training. Simi-

larly, meta-learning still ais at narrowing down the domain gap

between source domains but has no guarantee for target domain

generalization. Additionally, data augmentation [36, 42] is an effec-

tive direction to enrich the diversity of training distribution towards

newly introduced domains.

Motivated by an observation that class-irrelevant information,

such as semantic variation (e.g., geometric deformation, background

changes, simple noise, domain shift), would lead to negative transfer

if it is served as a clue for class prediction, we target at capturing

the invariance between source domains by decorrelating the sample

variations to class information. By doing so, the deep model would

ideally focus on the high-level categorical concept of objects for

prediction, while sample variations would not affect the model

decision.

Based on the finding that semantic relationships between sam-

ples can be captured by the spatial positions of their deep features

[34, 38], we propose to disentangle the semantic variation out of

sample in feature space by linearly subtracting the feature vector

with its corresponding online estimated class prototype. We demon-

strate that our estimated class prototype captures the meaningful
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Photo Sketch Art Painting Cartoon

Training set Test set

Figure 1: Examples from the dataset PACS [15] for Domain Generalization (DG). The training set consists of the domains of

sketch, photos, and art paintings. The goal of DG is to learn a model generalize well on unseen domain of cartoon.

categorical information in Figure 4 (1) and the disentangled vari-

ation vectors with similar semantic meaning, such as "standing

toward left" and "frontal view," are close to each other in feature

space in Figure 4 (2). Finally, we propose Feature variationDecor-

relation loss to decorrelate the variation vectors to categorical

information.

In summary, our main contributions are shown as follows:

• To our best knowledge, we conduct the first attempt in do-

main generalization to linearly disentangle the semantic vari-

ation out of sample in feature space and utilize it to learn a

domain-invariant representation via category decorrelation.

• We propose a novel category decorrelation regularization

on feature variation in the form of conditional entropy max-

imization.

• We have done qualitative analysis to visualize the feature

distribution of our trained model, and the nearest neighbors

of our estimated class prototype, and feature variation.

• We conduct extensive quantitative ablation study and exper-

iments on four Domain generalization benchmarks, namely

PACS, VLCS, OfficeHome, Digits-DG, and verify that our

method can outperform previous state-of-the-arts by a large

margin.

2 RELATEDWORK

Existing domain generation (DG) methods can mainly be catego-

rized into the following three groups, methods based on meta learn-

ing, method based on data augmentation, and methods based on

domain-invariant representation learning.

2.1 Meta-learning

Meta-learning-based methods simulate the domain shift scenario

during training to enhance the robustness of the model against

unseen domains. Li et al. [16] provides a general framework for

meta-learning-based DG by back-propagating the second-order

gradients calculated on a random meta-test domain split from the

source domains at each iteration. Further, [6] applies a shared fea-

ture extractor with several domain-specific aggregation modules,

which are aggregated during inference to predict the class label.

[17] trains independent feature extractors and classifiers for each

source domains and improve the robustness of model by training

them in an episodic manner. However, meta-learning methods do

not always have the guarantee for target domain generalization as

the simulated domain they trained on might not cover the target

domain shifts.

2.2 Data augmentation

Data Augmentation enhances the generalization performance of a

model by the transformation of data [10]. Typical augmentations in-

clude Gaussian noise, random color distortions, rotations and so on.

Other than typical augmentation techniques, [33] is the first work

applying domain randomization to generate new data which could

simulate the complex environments based on the training samples.

By adjusting the texture, shape of objects, and the illumination or

camera angle to simulate the environments, domain randomization

usually performs better than traditional augmentation techniques

in domain generalization. Additionally, adversarial data augmenta-

tion [42] is another important branch to optimize the augmented

training samples in terms of minimizing the generalization error

while maintaining the reliability via controlling the tolerance rate.

On top of this, Mixup [39] is adopted in several DG methods to get

new samples in either the original space or in the feature space

by conducting linear interpolation between two randomly chosen

instances and their labels. While these generated domains differ sig-

nificantly from the source domains, they potentially do not reflect

practical domain differences.

2.3 Domain-invariant representation learning

The goal of domain-invariant representation learning based meth-

ods is to reduce the discrepancy of representation with respect

to different domains while retraining the discriminative class in-

formation. [11] uses a kernel-based method to minimizes mean

domain discrepancy while maximizes mean class discrepancy. [18]

adopts adversarial auto-encoders to align the representations from
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all the source domains using adversarial learning. [31] uses domain-

specific normalizations to explore the best combination of batch

and instance normalization such that domain-agnostic representa-

tions can be learned. [2] learns the domain invariant representation

by solving jigsaw puzzles. [12] iteratively discards the network

units with the highest gradients while using the remaining units

to learns useful features. [37] provides extrinsic supervision in the

form of a metric learning task and intrinsic supervision in terms of

a self-supervised auxiliary task.

Our method is aligned with domain-invariant representation

learning and feature disentanglement. Different from [30] which

proposes a low-rank decomposition on the final classification layer,

we conduct a linear disentanglement on variation in feature space

and propose a decorrelation regularization. Unlike the traditional

feature disentanglement, method [29], we do not introduce an extra

disentangler network to decompose features into several compo-

nents and reconstructs the features via auto-encoder. Instead, we

conduct disentanglement on the original feature space.

3 METHOD

In this section, we start with an explanation of our motivation in

Sec. 3.2. Then, we introduce the feature variation disentanglement

and discuss variance transfer idea in Sec. 3.3. Finally, we present

our novel feature variation decorrelation loss in Sec. 3.4. Figure 2

shows the framework of the proposed method.

3.1 Problem Setting

Let X and Y respectively denote data and the label spaces. In

domain generalization (DG), there are 𝐾 source domains {D𝑖 }
𝐾
𝑖=1

and L target domains {D𝑖 }
𝐾+𝐿
𝑖=𝐾+1. Specifically, the source domain

dataset is denoted as D𝑖 = {(𝑥𝑖𝑗 , 𝑦
𝑖
𝑗 ) |
𝑁𝑖
𝑗=1} where 𝑥

𝑖
𝑗 and 𝑦

𝑖
𝑗 denote

the 𝑗𝑡ℎ training sample and its label from the 𝑖𝑡ℎ domain , and 𝑁𝑖
is the number of source images in domain 𝑖 . Note that all domains

share the same label space Y. The goal of DG is to generalize the

model training on the samples of source domains to unseen target

domains. We define a feature extractor parameterized by 𝜃 as 𝐹𝜃
and classifier parameterized by 𝜙 as 𝐶𝜙 such that the network can

be represented as 𝐺𝜃,𝜙 (·) = 𝐶𝜙 ◦ 𝐹𝜃 (·).

3.2 Motivation

Our method is motivated by an observation that class-irrelevant

information, such as sample variation (e.g., geometric deformation,

background changes, simple noise) and domain variation (image

style changes), is sometimes served as a clue for class prediction,

leading to negative transfer [29], especially when the target domain

is highly heterogeneous. Therefore, we aim at proposing a method

to capture the invariance between source domains by decorrelating

those semantic/domain variations to class information such that

the model would only focus on high-level semantic structure for

prediction when unseen target samples are given.

As deep neural networks are good at linearizing features of input

samples [34, 38], the semantic relationships between samples can be

captured by the spatial positions of their deep features. We propose

to linearly disentangle the observed variations out of samples in

feature space by subtracting the feature vectors with an online

estimated class prototype. Then, the disentangled variations are

decorrelated to the class information by our new loss function.

By doing so, our model would not suffer from making the wrong

prediction based on undesired variation clues.

3.3 Variation Disentanglement

In this section, we first build up a feature memory bank, compute

the class prototype based on the memory bank and finally obtain

the Semantic Variation Disentanglement.

3.3.1 Multi-variate Normal Distribution Assumption. We assume

that the data distribution follows a multi-variate normal distribu-

tionN(𝜇𝑐 , Σ𝑐 ) where 𝜇𝑐 and Σ𝑐 denote the class conditional mean

vector and covariance matrix. In the following sections, we would

estimate the class conditional mean as class prototype and obtain

the feature variations.

3.3.2 Online Memory Bank Update. First, we warm start the model

training for several epochs to make sure a meaningful feature space

is obtained. Then, we extract all the source features 𝑧𝑖𝑗 = 𝐹𝜃 (𝑥
𝑖
𝑗 )

by our model and save them into a feature memory bank 𝑀 =
{(𝑧𝑖𝑗 , 𝑦 𝑗 , 𝑑 𝑗 ) |

𝑁
𝑖=1} where 𝑦 𝑗 denotes the class label and 𝑑 𝑗 denotes

the domain label for feature 𝑧𝑖𝑗 .

Note that our memory bank 𝑀 is updated on the fly with the

latest features to replace the old ones. Formally, in each iteration k,

we will update a batch of features in memory module M:

𝑧𝑀𝑗 ← 𝑧𝑖𝑗 , 𝑗 ∈ B𝑘 (1)

Besides exactly replacing the old features with the new ones, we

also consider updating the features in a moving average manner.

Specifically, the feature in memory module M will be updated with

the moving average between the new feature and the old feature of

last epoch:

𝑧𝑡𝑗 = 𝛾𝑧 𝑗 + (1 − 𝛾)𝑧𝑡−1𝑗 , 𝑗 ∈ B𝑘 , (2)

where 𝛾 is the moving average coefficient.

The updating rule would affect the quality of features stored in

the memory bank, and thus directly relate to the quality of semantic

variation disentanglement. We conduct ablation study on updating

strategies in Table 5 and find out Equation (1) gives the better

performance.

3.3.3 Prototype Selection. We estimate the class prototype by tak-

ing the average over the features from same class. Specifically, the

class prototype 𝑦 can be represented as:

𝜇𝑦 =
1

𝐾

𝐾∑

𝑑=1

ˆ𝜇𝑑𝑦, 𝜇𝑑𝑦 =
1

𝑁𝑑𝑦

𝑁𝑑
𝑦∑

𝑗=1

𝑧𝑖𝑗 , (3)

where 𝐾 is the number of source domains. 𝜇𝑑𝑦 is domain-specific

class prototype. 𝑁𝑑𝑦 is the number of samples in class 𝑦 and domain

𝑑 . Typically, the representations of class prototype reflect the neural
semantic of each class. For example, the class prototype of human

faces is usually frontal with neural expression. This motivates us

to obtain the semantic feature variation by simply subtracting the

features to their corresponding class prototypes.
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Figure 2: Framework of our feature variation decorrelation method. In Sec. 3.3, we introduce the semantic variation defined

as the displacement between feature vector and its corresponding class prototype. In Sec. 3.4, we present the feature variation

decorrelation loss in the form of conditional entropy maxmization. We claim that by decorrelating the feature variations to

categorical information, model could capture high-level categorical concept while ignoring other undesired clues thatmislead

the model prediction.

3.3.4 Semantic Feature Variation. We consider the variations in the

latent feature space which captures semantic information about the

given sample. Formally, we denote the semantic variations 𝑣 𝑗 as the
displacement between an j-th feature vector 𝑧 𝑗 and the estimated

prototype of class 𝑦 𝑗 in the feature space:

𝑣 𝑗 = 𝑧 𝑗 − 𝜇𝑦 𝑗 . (4)

Those variations could represent the semantic meaning such as

shape, color, visual angle and background. As we use unified class

prototype for the samples of same class but different domain, the

the semantic variations 𝑣 𝑗 also capture domain variation. We claim

those variations should not contribute to the categorical prediction

and we introduce a new loss function to weaken this correlation in

the next section.

Discussion onvariation transfer. Inspired from long-tailed recog-

nition [22] to transfer variance from head class to tail class such

that the samples from tail class could be augmented, we also think

about transferring variance across class and domains to augment

our training samples. Instead of manipulating in original space, we

augment the samples in feature space. Specifically, we adopt condi-

tional GAN [25] to generate new features of class 𝑦 with variations

from other class. The class prototype 𝜇𝑦 and variation 𝑣 𝑗 are the

inputs to the generator 𝐺 , and new augmented feature 𝑧
𝑗
𝑎𝑢𝑔 with

class label 𝑦 is generated as:

𝑧
𝑗
𝑎𝑢𝑔 = 𝐺 (𝜇𝑦, 𝑣 𝑗 ). (5)

Additionally, a discriminator 𝐷 is introduced to distinguish the

features between real and fake (generated). The discriminator is

optimized to minimize the following objective function while gen-

erator is optimized to maximize it to fool the discriminator.

L𝑎𝑑𝑣 (𝐺,𝐷) =
1

𝑁

𝑁∑

𝑗=1

log𝐷 (𝑧 𝑗 , 𝑦 𝑗 ) +
1

𝑁

𝑁∑

𝑗=1

log𝐷 (1 −𝐺 (𝜇𝑦, 𝑣 𝑗 ), 𝑦),

(6)

where 𝑁 is the number of all source samples.

We incorporate those augmented features for training and report

the result of variance transfer via feature augmentation in Table 5.

We found out that it achieves marginal improvement compared to

vanilla model. Please check section 4.5.1 for more detail.

3.4 Feature Variation Decorrelation

The key idea of our method is that the observed variations of real

data (e.g. geometric deformation, background changes, simple noise

and domain style) should not affect the model categorical prediction

such that the model would only focus on high-level categorical

concept for learning and generalize better to unseen domains.

First, we train our model on samples from source domains with

the following objective:

min
F,C

1

𝑁

𝑁∑

𝑗=1

L𝑐𝑒
(
C(F (𝑥 𝑗 )), 𝑦 𝑗

)
, (7)

where L𝑐𝑒 denotes the cross-entropy loss.

In order to decorrelate the variations from categorical informa-

tion, we propose a novel Feature Variation Decorrelation (FVD)

loss via pushing the classifier prediction of feature variation to be

uniform distributed. Specifically, we compute the variation of a

feature based on Eqation 4, feed it into the classifier, and maximize

the conditional entropy of this prediction. The conditional entropy

of variation prediction can be formally formulated as:

L𝐹𝑉𝐷 = −
1

𝑁

𝑁∑

𝑗=1

C(F (𝑥 𝑗 ) − ˆ𝜇𝑦 𝑗 ) log(C(F (𝑥 𝑗 ) − ˆ𝜇𝑦 𝑗 )). (8)

BymaximizingL𝐹𝑉𝐷 , the classifier prediction of variationwould

be close to a uniform distributed vector. In other words, it does not

have any correlation with categorical information.

Finally, the total loss function can be formulated as:

L𝑎𝑙𝑙 = L𝑐𝑒 − 𝜆L𝐹𝑉𝐷 , (9)

where 𝜆 is the hyperparameter to balance the decorrelation loss.
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4 EXPERIMENT

In this section, we organize the experiments as: (1) We present

quantitative evaluation results on four public domain generalization

benchmarks, namely Digits-DG, PACS, VLCS and Office-Home. (2)

We conduct extensive ablation study of our proposed idea in section

4.5. (3)We present the qualitative analysis in section 4.6 in terms

of visualizing feature distribution, prototype and feature variation.

4.1 Datasets

We evaluate the proposed method on various domain generalization

datasets as follows:

• Digits-DG [42] consists of four digit recognition datasets,

namely MNIST [13], MNIST-M [8], SVHN [28] and SYN [8],

which differ drastically in font style and background.

• PACS [15] contains 9991 images from 4 domains, i.e., Photo,

Art painting, Cartoon, and Sketch, which cover huge domain

gaps. Images are from 7 object classes, i.e., dog, elephant,

giraffe, guitar, horse, house, and person.

• VLCS [7] includes images fromfive classes over four domains.

The domains are defined by four image origins, i.e., images

were taken from the PASCAL VOC 2007, LabelMe, Caltech

and Sun datasets.

• Office-Home [35] contains 65 object categories to over 4

domains (Art, Clipart, Product, and Real-World). The domain

variations mainly take place in background, viewpoint and

image style.

4.2 Evaluation protocol

For fair comparison with prior work, we follow the leave one-

domain-out protocol in [2, 4]. Specifically, one domain is chosen as

the test domain while the remaining domains are used as source

domains for training. The top-1 classification accuracy is used as

performance measure. For each target domain, the reported results

are averaged over five independent runs with different random

seeds. We report the standard deviation as 0 for models which have

not reported them in their respctive paper. For each dataset, we

use the official source domain validation set for selecting hyperpa-

rameters if it is available. Otherwise, we split the data from source

domains into training and validation sets.

4.3 Implementation Details

For Digits-DG, we follow the experimental setup of [42] and use

their architecture for the feature extractor. Specifically, the CNN

backbone is constructed with four 64-kernel 3×3 convolution layers

and a softmax layer. ReLU and 2×2 max-pooling are inserted after

each convolution layer. The networks are trained from scratch using

SGD with initial learning rate of 0.05, batch size of 128 and weight

decay of 5e-4 for 50 epochs. The learning rate is decayed by 0.1

every 20 epochs.

For PACS, We follow the experimental protocol defined in [15]

and use alexnet, ResNet-18 and ResNet-50 as the CNN backbone.

For VLCS, We follow the same experimental setup as mentioned

in [24] and adopt alexnet as the CNN backbone. For Office-Home,

We follow the experimental protocol as outlined in [6]. We utilize a

ResNet-18 as backbone. For those three datasts, we utilize unified

optimization with initial learning rate of 0.01 and batch size of 96

(32 images per source) for 540 epochs. The learning rate is decayed

by 0.1 after 30 epochs.

We also adopted the same data augmentation as JiGen [2] , which

includes random cropping, rescale, horizontal flipping, color jitter

and grayscale.

Method Art. Cartoon Sketch Photo Avg.

AlexNet

Vanilla 66.68 69.41 60.02 89.98 71.52

Jigen [2] 67.63 71.71 65.18 89.00 73.38

MMLD [24] 69.27 72.83 66.44 88.98 74.38

MetaVIB [5] 71.94 73.17 65.94 91.93 75.74

DGER [40] 71.34 70.29 71.15 89.92 75.67

EISNet [37] 70.38 71.59 70.25 91.20 75.86

Ours 72.12±0.3 74.86±0.2 72.56±0.1 91.57±0.4 77.78

ResNet-18

Vanilla 77.65 73.93 70.59 95.12 79.32

Jigen [2] 79.42 75.25 71.35 96.03 80.51

DGER [40] 80.70 76.40 71.77 96.65 81.38

MMLD [24] 81.28 77.16 72.29 96.09 81.83

EISNet [37] 81.89 76.44 74.33 95.93 82.15

L2A-OT [41] 83.30 78.20 73.60 96.20 82.80

Ours 84.13±0.1 81.61±0.3 80.79±0.2 95.21±0.2 85.44

ResNet-50

Vanilla 80.22 78.52 76.10 95.09 82.48

MASF [4] 82.89 80.49 72.29 95.01 82.67

DGER [40] 87.51 79.31 76.30 98.25 85.34

EISNet [37] 86.64 81.53 78.07 97.11 85.84

DSON [31] 87.04 80.62 82.90 95.99 86.64

Ours 87.89±0.2 83.53±0.4 84.35±0.3 96.77±0.1 88.13

Table 1: Results on PACS [15] dataset with AlexNet, ResNet-

18 and ResNet-50 as backbones.

Method Caltech LabelMe Pascal Sun Avg.

Vanilla [2] 96.25 59.72 70.58 64.51 72.76

Jigen [2] 96.93 60.90 70.62 64.30 73.19

MMLD [24] 96.66 58.77 71.96 68.13 73.88

MASF [4] 94.78 64.90 69.14 67.64 74.11

MetaVIB [5] 97.37 62.66 70.28 67.85 74.54

DGER [40] 96.92 58.26 73.24 69.10 74.38

EISNet [37] 97.33 63.49 69.83 68.02 74.67

Ours 97.86±0.3 64.33±0.2 74.35±0.4 69.37±0.3 76.48

Table 2: Results using AlexNet backbone on VLCS [7]

dataset.

4.4 Comparative Results

We compare with the following state-of-the-art methods, Jigen [2],

CCSA [27], MMD-AAE [18], CrossGrad [32], L2A-OT [41], MetaVIB

[5], DGER [40], EISNet [37], DSON [31] and RSC [12]. We denote

"Vanilla" as our baseline which uses cross-entropy to train a shared

feature extractor and classifier for all source domains in Table 1 - 4.

Poster Session 2 MM ’21, October 20–24, 2021, Virtual Event, China

1687



Method Artistic Clipart Product Real-World Avg.

Vanilla[41] 58.9 49.40 74.30 76.24 64.75

D-SAM [6] 58.03 44.37 69.22 71.45 60.77

Jigen [2] 53.04 47.51 71.47 72.79 61.20

MMD-AAE [18] 56.50 47.30 72.10 74.80 62.70

DSON [31] 59.37 45.70 71.84 74.68 62.90

RSC [12] 58.42 47.90 71.63 74.54 63.12

L2A-OT [41] 60.60 50.10 74.80 77.00 65.60

Ours 62.24±0.3 54.38±0.2 76.12±0.1 78.64±0.2 67.85

Table 3: Results using ResNet-18 backbone on Office-Home

[35].

Method MNIST MNIST-M SVHN SYN Avg.

Vanilla [41] 95.8 58.8 61.7 78.6 73.7

Jigen [2] 96.50 61.40 63.70 74.00 73.90

CCSA [27] 95.20 58.20 65.50 79.10 74.50

MMD-AAE [18] 96.50 58.40 65.00 78.40 74.60

CrossGrad [32] 96.70 61.10 65.30 80.20 75.80

L2A-OT [41] 96.70 63.90 68.60 83.20 78.10

Ours 97.68±0.3 66.24±0.5 70.97±0.5 85.18±0.3 80.02

Table 4: Results on Digits-DG [42] dataset.

4.4.1 Evaluation on PACS. We compare our method against the

state-of-the-art on PACS dataset. The performance with AlexNet,

ResNet-18 and ResNet-50 as backbones is shown in Table 1. We

summarise our findings as follows. (1) Our method outperforms

the state-of-the-art methods on all three backbones by a significant

margin, which demonstrates the effectiveness and robustness of

our method to different network architectures. (2) Compared to

other Domain-invariant representation learning methods such as

Jigen [2], EISNet [37], DGER [40], and DSON [31], our method

outperforms the best competitor by 1.92% on AlexNet, 2.56% on

ResNet-18 and 2.29% on ResNet-50. It proves that by de-correlating

the feature variation to categorical information, our method could

learn a better domain-invariant representation than others. (3) Com-

pared to the data augmentation method such as L2A-OT [41] which

enriches the domain diversity of training data, our method yields

large improvements by 2.44% on ResNet-18.

4.4.2 Evaluation on VLCS. The performance with AlexNet as back-

bones is reported in Table 2. The findings from section 4.4.1 still

hold on VLCS. We achieve state-of-the-art results on VLCS where

the domain shift is less severe than the PACS dataset. Thus, we

demonstrate that our method generalizes well even when the source

domains are not diverse.

4.4.3 Evaluation on Office-Home. The results are reported in Ta-

ble 3 using a ResNet-18 backbone. Again, our method beats the

second-best competitor by 2.25%. It is worth noting that our method

achieves a large improvement with 4.28% on Clipart which has the

largest domain gap between other source domains. This demon-

strates the domain generalization of our method on a dataset with

office and home-related objects.

4.4.4 Evaluation on Digits-DG. Digits-DG consists of four digit

recognition datasets, each of which is considered as one domain.

Note that the image size of Digits-DG is 32 × 32 compared to 224

× 224 from previous benchmarks. Also, we show the performance

with the same backbones as competitors [41, 42] in table 4. Com-

pared to data augmentation methods such as CrossGrad [32] and

L2A-OT[41], our method achieves better performance by a large

margin (+1.92%). Additionally, compared to other domain-invariant

representation learning methods such as MMD-AAE and CCSA,

our method makes a significant improvement on all domains by

4.92% on average. It demonstrates the effectiveness of our method

on digit recognition with small image resolution via pushing the

better domain-invariant representation.

4.5 Ablation Study

4.5.1 Feature Variation Decorrelation vs Feature Augmentation. As

discussed in Section 3.3.4, semantic feature variation could be uti-

lized to augment the features of one class along the direction of

unseen variations from other class. This is based on the motiva-

tion that humans are capable of transferring variations from one

visual class to another or from one domain to another. For example,

when we see an animal that we have never seen before, we can

imagine how it will look with different background and surround-

ings. As Table 5 reports, feature augmentation achieves a marginal

improvement compared to the vanilla baseline by 1.51%. In com-

parison, feature variation decorrelation largely outperform feature

augmentation by 4.61%. The possible reason of limited improve-

ment from feature augmentation is that the generated features are

still within the similar mode of original data distribution. In compar-

ison, variation decorrelation can be considered as an implicit way

to achieve inter-class variance transfer by regularizing the feature

variations to be class-agnostic. Therefore, the sample variations

could be implicitly shared across classes.

4.5.2 Feature Variation Decorrelation vs Feature Disentanglement.

Our method also shares some similarity with representation dis-

entanglement such as DADA [29] where a feature is disentangled

into domain-invariant, domain-specific and class-irrelevant fea-

tures. Different from our method, DADA disentangles the feature

with additional disentangler network and uses auto-encoder to

reconstruct the original feature. During the training and testing,

only domain-invariant feature is used for class prediction in DADA

while our method uses original feature for model prediction. In

comparison, our method does not specially disentangle the fea-

ture into several components but regularizing the variation portion

of original feature to be class-agnostic. We implemented DADA

in Table 5 and term it as DisETG. It is reported that our feature

correlation achieves a large margin over DADA by 4.75%, which

demonstrates the effectiveness of our method over representation

disentanglement method.

4.5.3 Importance of Memory Bank Updating Rule. As Section 3.3.2

presents, we introduce two online updating rule for memory bank:

One is to replace the old features with current new features, the

other is to replace the old ones with the moving average of current

features. We term the former option as "New" and the latter as

"Moving Avg" in Table 5. It is reported that using "New" as memory

bank updating rule achieves the better performance than using

"Moving Avg" by 1.27% for decorrelation experiment and by 0.69 %
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Moving avg New FeatAug Decorrelation DisETG [29] Accuracy

- - - - - 79.32

- - - - � 80.69

� - � - - 80.43

- � � - - 81.12

� - - � - 84.17

- � - � - 85.44

Table 5: Ablation study of our method with ResNet-18 on the PACS dataset. Note that "New" refers to the memory bank

updating rule with current new features and "Moving Avg" refers to the memory bank updating rule with moving average

of features detailed in Sec. 4.5.3. "FeatAug" refers to feature augmentation and "Decorrelation" refers to feature decorrelation

in Sec. 4.5.1. "DisETG" refers to feature disentanglement in Sec. 4.5.2.

Figure 3: The feature visualization via t-SNE on PACS with art painting as target domain. (a) Vanilla Baseline. (b) Our Feature

Variation Decorrelation.

for feature augmentation experiment. The reason might be that the

moving average of feature accumulate the out-of-date features and

bias the estimation of class prototype.

4.5.4 Hyper-parameter Sensitivity . We conduct hyperparaemter

sensitivity experiment on 𝜆 from Equation 9 and report the result in

figure 5.We choose 𝜆 from {0, 0.1, 0.5, 1, 2} for sensitivity experiment.

The findings can be summarized as follows: (1) When 𝜆 is larger

than zero (which means our feature variation decorrelation loss

is applied), our model has been improved drastically compared to

the vanilla baseline. (2) The model achieves the best performance

with 85.44% when 𝜆 is equal to 0.1. (3) Our model is robust to the

changes of hyper-parameter 𝜆 between {0.1, 0.5, 1, 2}.

4.6 Qualitative Analysis

4.6.1 Feature Visualization. To better understand the distribution

of the learned features, we exploit t-SNE [23] to analyze the feature

space learned by vanilla baseline and our feature decorrelation on

PACS dataset with art painting as target domain in figure 3 (a) and

(b). We can qualitatively observe that our method could learn more

discriminative feature space where clusters are more compact and

domain-invariant than vanilla baseline.

4.6.2 Visualization of Prototype. To validate our prototype com-

puted based on recorded memory feature bank could capture the

high-level categorical information, we use the domain-specific pro-

totype features to search for their nearest neighbors in feature

space and visualize the neighbor samples in Figure 4(1). We can see

that their nearest image neighbors successfully capture the class

information and the variations of those samples are inclined to be

neural and less rare.

4.6.3 Visualization of feature variation. To qualitatively visualize

feature variations, we first compute the feature variations 𝑣 𝑗 of
all features by Equation 4 and randomly select some samples as

anchors. We search for the nearest neighbors of anchor in feature

space via feature variation vectors 𝑣 𝑗 and visualize image neigh-

bors in Figure 4(2) where each row represents the variation of

corresponding anchor. The observations could be summarized as

follows: (1) For each row, the feature variation is class-agnostic

after training with our decorrelation loss. For example, the first row
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Figure 4: (1) We visualize the prototypes’ nearest image neighbors for each domain in the feature space on PACS dataset. We

found out that our domain-specific prototypes computed from memory bank could capture the high-level category infor-

mation. (2) To concretely visualize the feature variation, we select some samples as anchor and find its top 3 nearest image

neighbors in feature space by feature variation vector. We can see that the feature variation of each row is class-agnostic and

variations with similar semantic meaning are close to each other in feature space. (e.g (a) Pose towards left. (b) Frontal pose.

(c) Two objects. (d) sitting towards right.)

Figure 5: Hyper-parameter sensitivity of 𝜆 on PACS dataset.

in Fig. 4(2.a) refers to a dog standing towards left and the image

neighbors this anchor are from other classes such as elephant and

horse with similar pose. (2) feature variations with similar se-

manticmeaning are close to each others in feature space. For

example, Fig. 4(2.a) refers to the variation of standing towards left;

Fig. 4(2.b) refers to the variation of frontal pose; Fig. 4(2.c) refers

to the variation of two objects; Fig. 4(2.d) refers to the variation of

sitting towards right.

5 CONCLUSION

In this paper, we propose to linearly disentangle the variation out of

sample in feature space and impose a novel class decorrelation reg-

ularization on the feature variation. By doing so, the model would

focus on the high-level categorical concept for model prediction

while ignoring the misleading clue from other variations (including

domain changes). As a result, we achieve state-of-the-art perfor-

mances over all of widely used domain generalization benchmarks,

namely PACS, VLCS, Office-Home, and Digits-DG with large mar-

gins. We demonstrate that our estimated class prototype captures

the meaningful categorical information and disentangled variation

vectors with similar semantic meaning are close to each other in

feature space.
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