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ABSTRACT
Unsupervised domain adaptation (UDA) involves predicting un-
labeled data in a target domain by using labeled data from the
source domain. However, recent advances in pseudo-labeling (PL)
methods have been hampered by noisy pseudo-labels that dimin-
ish the local discriminativeness of the target structure. Although
neighborhood-based PL can help preserve the local structure, it also
risks assigning the whole local neighborhood to the wrong seman-
tic category. To address this issue, we propose a novel framework
called neighborhood consistency learning (NCL) that operates at
both the semantic and instance levels and features a new consis-
tency objective function. Specifically, our objective function aims
to promote semantic consistency in the target neighborhood by
computing the correlation matrix between the target samples and
their neighborhood aggregation over a batch and matching the
correlation matrix to an identity matrix. Importantly, our approach
allows the target neighborhood to receive gradients from several
potential positive categories instead of just one certain category.
Our extensive experiments on UDA benchmarks demonstrate the
effectiveness of NCL over other state-of-the-art PL-based methods.
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1 INTRODUCTION
Recent advances in deep neural networks have revolutionized many
computer vision tasks, such as image recognition [6, 18, 22] and
face recognition[19]. However, achieving these remarkable results
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Figure 1: Comparison between neighborhood pseudo-
labeling (NPL) [15] and our approach. (a) NPL carries the risk
of misclassifying semantic-uncertain neighborhoods into a
single wrong category due to unreliable supervision. (b) In
contrast, our neighborhood consistency learning (NCL) ap-
proach prioritizes semantic consistency learning and enables
the target neighborhood to receive gradients from multiple
categories which might contain the positive one.

heavily depends on costly and time-consuming human annotations.
To tackle this challenge, researchers have explored semi-supervised
learning (SSL) [23] and self-learning [5] to transfer knowledge from
label-rich datasets to label-scarce ones. however, the domain shift
problem between the source and target dataset usually exists in real-
worlds scenario, leading to performance degradation. To mitigate
this problem, domain adaptation (DA) has been exploited to transfer
knowledge across datasets with domain discrepancy. Unsupervised
domain adaptation (UDA) is a more challenging scenario where the
target domain does not have labels.

One direction of UDA involves learning domain-invariant rep-
resentations by simultaneously minimizing the source error and
reducing the discrepancy between domains [20, 30]. Adversarial
learning, which uses a domain discriminator, is effective for this
purpose. However, it only aligns the global feature distribution
of two domains and does not consider the categorical structure
of target data, limiting the model’s generalization on the target
domain. Another UDA direction is to directly apply SSL techniques
to UDA problems [10, 39] by considering the target domain as
unlabeled data. Pseudo-labeling (PL) methods [33, 40] (Fig. 2(a))
have been widely used in UDA by generating pseudo-labels for
unlabeled target samples and retraining the network on them in
a supervised manner. However, PL is known for propagating er-
rors and deteriorating the local structure of target data. Recent
works [15, 37] propose generating pseudo-labels based on the ag-
gregated neighborhood predictions obtained from the classifier, as
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Figure 2: Framework comparison between Pseudo-labeling (PL), Neighborhood Pseudo-labeling (NPL), and Ours: (a) PL retrains
the network based on pseudo-labels from one view. (b) NPL utilizes target neighborhood predictions to generate pseudo-labels.
(c-d) NCL prioritizes the consistency learning between target samples and their neighborhood at semantic and instance levels.

shown in Fig. 2(b), to preserve the target’s local structure. Nonethe-
less, neighbor-based pseudo-labels may also contain noise, which
could push semantic-uncertain neighborhoods to wrong categories,
as shown in Fig. 1(a).

In this paper, we present a novel neighborhood consistency learn-
ing (NCL) framework, illustrated in Figure 2(c)(d). To address the
issue depicted in Fig. 1(a), we propose a new consistency training
objective by matching the correlation matrix between target pre-
dictions and their aggregated neighbor predictions to an identity
matrix, as shown in Figure 2(c). Instead of simply averaging neigh-
bor predictions for aggregation, we design an uncertainty-aware
weighted aggregation method to mitigate the adverse effects of
potential negative neighbors (i.e., those who do not share the same
class as the anchor). Our objective has two advantages: first, it
allows the semantic-uncertain target neighborhood to receive gra-
dients from multiple categories with high confidence, rather than
from a single specific category. Consequently, it avoids the model
having overconfident outputs and trusting on high-confident false
positives with error accumulation. Second, it encourages category
diversity over the target data.

As the domain shift problem can affect the reliability of semantic-
level information from the classifier, we propose to leverage instance-
level information for neighborhood consistency learning, as illus-
trated in Fig. 2(d). To achieve this, we use the embeddings of source
data as an instance-level classifier and compute similarity scores be-
tween target embeddings and source embeddings (and likewise for
target neighborhood embeddings). Similar to the semantic-level ob-
jective, we obtain the correlation matrix based on similarity scores
and apply correlation matrix matching at the instance level for
consistency learning.

Our contribution can be summarized as follows:
• We observe that the existing neighbor-based PL methods
have the risk of pushing neighborhoods of target data to
wrong categories even though the local discriminative struc-
tures are well-preserved.

• Wepropose a novel neighborhood consistency learning (NCL)
framework at semantic and instance levels for unsupervised
domain adaptation.

• Wepropose a new consistency objective in the form ofmatch-
ing the correlationmatrix of two positive views to an identity
matrix.

• We conduct extensive experiments and ablation studies to
verify the effectiveness of NCL thoroughly. Our method
could achieve competitive or better results than previous
PL-based state-of-the-art methods across several UDA clas-
sification benchmarks.

2 RELATEDWORK
2.1 Discrepancy-based DA
Existing methods have been explored to align the feature represen-
tations of the source and target images by minimizing the distribu-
tion discrepancy. For example, MaximumMeanDiscrepancy (MMD)
[31] is proposed to match the mean and covariance of source and
target distributions. Alternatively, adversarial domain adaptation
methods [3, 17, 30] solve this domain discrepancy by training a
domain-invariant feature generator that produces the features to
fool a discriminator that distinguishes the representations from
source and target domains. However, since the domain discrim-
inator aligns source and target features without considering the



Rethinking Neighborhood Consistency Learning on Unsupervised Domain Adaptation MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

class labels, merely aligning the global marginal distribution of the
features in the two domains fails to align the class-wise distribution.

2.2 Pseudo-labeling in DA
Inspired by cluster assumption, pseudo-labeling can realize the
class-wise alignment across domains. Specifically, it iteratively gen-
erates pseudo-labels for the target samples with high prediction
probability and retrains the network based on those pseudo-labels
along with labeled source data. This technique has been widely
employed for UDA [12, 24, 33, 34, 40] tasks. However, due to the
"overconfidence" issue on wrong pseudo-labels, PL deteriorates the
local discriminative structure of target data.

Recent works [15, 28, 37] propose various approaches to pre-
serve this local structure, e.g., Tang et al. [28] adopt deep clustering
to assign local neighborhoods of target data to the same clusters.
Liang et al. [15] generates pseudo-labels from the neighborhood
classifier predictions of target samples. Contrastive learning [16]
has been also integrated with pseudo-labels for better discrimi-
native structure. Although category consistency is preserved for
the local target neighborhoods, existing approaches have a risk
of pushing the neighborhoods to the wrong category. In compari-
son, NCL introduces a new consistency objective that allows the
target neighborhoods to be assigned to several potential positive
categories. Further, NCL enforces semantic-level and instance-level
consistency learning between target samples and their neighbors
with more reliable matching targets.
2.3 Consistency Learning in SSL
Consistency Regularization stands as a popular technique in semi-
supervised learning, aimed at ensuring the model generates con-
sistent predictions across different views of the same instance. For
example, VAT [23] generates different positive views with adver-
sarial permutations. Mean Teacher [29] explores the exponential
moving average (EMA) model and utilizes its output as another
view. FixMatch [27] leverage the strong augmentations as another
positive view with pseudo-labels retraining. Compared to these
methods, NCL proposes a new positive view of unlabeled data with
neighborhood information. Further, instead of simply enforcing
the prediction consistency, our new objective based on the correla-
tion matrix could avoid pushing the positive views to the wrong
category with overconfidence.

3 PRELIMINARY
3.1 Problem Definition
In unsupervised domain adaptation (UDA) problem, we are given
a source domain D𝑠 = {(𝒙𝑠

𝑖
,𝒚𝑠

𝑖
) |𝑁𝑠

𝑖=1} of 𝑁𝑠 labeled source exam-
ples and a target domain D𝑡 = {(𝒙𝑡

𝑖
) |𝑁𝑡

𝑖=1} of 𝑁𝑡 unlabeled target
examples. Note that source and target domain share the same label
space. The joint distributions of source and target domain are not
identically and independently distributed, specifically 𝑃 (𝒙𝑠 ,𝒚𝑠 ) ≠
𝑄 (𝒙𝑡 ,𝒚𝑡 ). The objective of UDA is to train a deep neural network
𝐺 (·|𝜽 ) on labeled source data (𝒙𝑠

𝑖
,𝒚𝑠

𝑖
) drawn fromD𝑠 and unlabeled

target data 𝒙𝑡
𝑖
drawn fromD𝑡 such that the model𝐺 (·|𝜽 ) can gener-

alize well on target domain. In details, network𝐺 (·|𝜽 ) = 𝐶 ◦ 𝐹 (·|𝜽 )
is comprised of a feature extractor 𝐹 (·|𝜽 ) and a classifier 𝐶 (·|𝜽 )
where 𝜽 denotes network parameters.

In general, training a network 𝐺 (·|𝜽 ) on source domain only
leads to sub-optimal performance as the domain gap issue is un-
solved. The cross-entropy loss is applied to the source data in the
form of:

L𝑠 (𝐹,𝐶) =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

L𝑐𝑒

(
𝐶 (𝐹 (𝑥𝑠𝑖 |𝜽 )), 𝑦

𝑠
𝑖

)
. (1)

As the consequence, domain alignment loss is incorporated with
Eq. 1 to mitigate the domain shift problem.

3.2 Traditional Pseudo-labeling
PL-based methods [33, 40] are prone to make the network be confi-
dent on target predictions by retraining the network with pseudo
labels which correspond to the largest prediction probability of
target samples. The objective is defined as:

L𝑡
𝑝𝑙
(𝜽 ) = 1

𝑁𝑡

𝑁𝑡∑︁
𝑖=1

L𝑐𝑒

(
𝑝𝑡𝑖 , 𝑦

𝑡
𝑖

)
, (2)

𝑦𝑡𝑖 = 1[max(𝑝𝑡𝑖 ) > 𝜏], 𝑝𝑡𝑖 = 𝐶 (𝐹 (𝑥𝑡𝑖 |𝜽 )), (3)

where 𝑦𝑡
𝑖
is the pseudo label and 𝑝𝑡

𝑖
is the output prediction of

the 𝑖 target sample, and 𝜏 is a confidence threshold. Nonetheless,
the pseudo labels of target samples are noisy since the model is
biased toward source data. Trusting those noisy pseudo-labels has
a high risk of misleading the training, and deteriorates the intrinsic
discriminative target structures.

3.3 Neighborhood Pseudo-labeling
Recent efforts [15, 37] have been made to preserve the local struc-
ture of target data with neighborhood PL. Specifically, they first
save all the features and predictions of the target data in thememory
bank V𝑡 = {(𝑧𝑡

𝑖
, 𝑝𝑡

𝑖
) |𝑁𝑡

𝑖=1}. Given a target sample 𝑥𝑡
𝑖
, they retrieve

𝑘 nearest neighbors from the memory bank based on the cosine
similarity. The predictions of retrieved neighbors can be aggregated
as follows:

𝑝𝑖 =
1
𝑘

∑︁
𝑗≠𝑖, 𝑗∈N𝑖

𝑝 𝑗 , (4)

𝑦𝑡𝑖 = 1[max(𝑝𝑖 ) > 𝜏], (5)

where N𝑖 denotes the index set of neighbors in the memory
bank for the sample 𝑥𝑡

𝑖
and 𝑝 𝑗 is the prediction of neighbors. 𝑦𝑡

𝑖
is

the pseudo label based on the aggregated predictions of the neigh-
borhood. As the neighborhood aggregation on the semantic level
(predictions) only is not always reliable, we claim that neighbor-
hood PL methods still have a failure case where semantic-uncertain
neighborhoods are pushed to the wrong categories with preserved
local structures as Fig. 1(a) shows.

4 METHOD
In this section, motivated by the limitations of existing neighbor-
hood PL methods above, we propose a neighborhood consistency
learning (NCL) framework at semantic and instance levels with
a new consistency training objective for better reliability as illus-
trated in Figure 2(c)(d).
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4.1 Uncertainty-aware Neighborhood
Aggregation

Existing neighborhood PL methods assume that the local neigh-
borhood of target data share the same semantic class (positive),
and thus, they treat each neighbor equally by averaging neighbor
predictions as an aggregated target. We instead claim that not all
the neighbors in the target feature space are positive to the anchor.
Intuitively, the purity of the neighborhood in terms of semantic
consistency is decreased with the increase of neighborhood size 𝑘 .
In other words, there is a trade-off between neighborhood diversity
and purity.

To mitigate the adverse effect of potential negative neighbors,
we propose an uncertainty-aware weighted aggregation for the
target neighborhood. Following the notation from Eqn. 5, the ag-
gregation can be conducted in both output predictions and feature
embeddings as:

�̂�𝑖 =
1
𝑘

∑︁
𝑗∈N𝑖

𝑤𝑖, 𝑗𝑝 𝑗 , (6)

�̂�𝑖 =
1
𝑘

∑︁
𝑗∈N𝑖

𝑤𝑖, 𝑗𝑧 𝑗 , (7)

𝑤𝑖, 𝑗 = 1 −
H(𝑝𝑡

𝑖
, 𝑝 𝑗 )

log𝑀
, (8)

Where 𝑝𝑖 and 𝑧𝑖 refer to the weighted aggregation of the prediction
and embedding, respectively, for the target sample 𝑥𝑡

𝑖
.𝑤𝑖, 𝑗 denotes

the weight for the 𝑗-th neighbor of sample 𝑖 .H(𝑎, 𝑏) = −𝑎 log(𝑏)
is the entropy function with 𝑀 indicating the number of class.
As the entropy value H(·, ·) ranges from (0, log𝑀], the weight
𝑤𝑖, 𝑗 will be constrained between [0, 1). Intuitively, the neighbors
with low entropy are more likely to be positive and will be up-
weighted in aggregation. In contrast, neighbors with high entropy
are considered negative and down-weighted instead.

It is worth noting that, different from Eqn. 5, we use weak aug-
mentation as one view for kNN retrieval and neighborhood ag-
gregation while applying strong augmentation as another view as
prediction (as shown in Figure 2(c)(d)). Secondly, we consider the
sample itself as one of the neighbors because the strong augmen-
tation could largely distort the spatial information while preserv-
ing the semantic clue unchanged. In this way, our modification
increases the neighborhood diversity with strong augmentation
and reduces pseudo-supervision noise by considering the samples
themselves as neighbors.

4.2 Semantic-level Consistency Learning
Existing neighborhood PL methods [15] have the risk of pushing
semantic-uncertain neighborhoods to the wrong categories even
though the local structures are preserved, as Figure 1(a) shows.

Motivated by [38], we propose a new consistency training ob-
jective to match the correlation matrix between target predictions
and their aggregated neighbor predictions to an identity matrix
over a batch. Specifically, as illustrated in Figure 2(c), we construct
two views of a target images batch with strong augmentation 𝑋𝑠𝑎

𝑡

and weak augmentation 𝑋𝑤𝑎
𝑡 , respectively. The weakly-augmented

batch is then utilized to retrieve their k nearest neighbors (kNN) and
perform uncertainty-aware neighborhood aggregation in network
prediction level in Eqn. 6. After we obtain the output prediction

for the strongly-augmented view 𝑝𝑠𝑎𝑡 and weighted neighborhood
aggregated view 𝑝𝑤𝑎 , our consistency objective over a target batch
is formulated as:

L𝑁𝐶𝐿−𝑆 = ∥C𝑝 − I∥2,

=
∑︁
𝑖

(1 − C𝑝

𝑖𝑖
)2 +

∑︁
𝑖

∑︁
𝑗≠𝑖

C𝑝

𝑖 𝑗

2 (9)

whereI is an identity matrix, and C𝑝 is the cross-correlationmatrix
computed between the 𝑝𝑠𝑎

𝑏,𝑡
and 𝑝𝑤𝑎

𝑏,𝑡
along the batch dimension:

C𝑝 =
𝑝𝑠𝑎
𝑏,𝑡

· 𝑝𝑤𝑎
𝑏,𝑡√︃

(𝑝𝑠𝑎
𝑏,𝑡

)2
√︃
(𝑝𝑤𝑎

𝑏,𝑡
)2

(10)

where 𝑏 indexes batch samples. C𝑝 is a square matrix with size the
dimension𝑀 of the network’s output.

Intuitively, the first term of the objective enforces the diago-
nal elements of the cross-correlation matrix to 1. In this way, the
target samples are prone to be semantically consistent with their
neighborhood aggregation with gradients from all potential posi-
tive categories rather than from a single specific category (shown
in Figure 1(b)). Also, the first term implicitly encourages category
diversity over a batch to be uniformly distributed. Further, it can
reduce the network’s bias towards the dominating categories.

The second term tries equating the cross-correlation matrix’s off-
diagonal elements to 0. It decorrelates each unit of output prediction,
pushing the output units to contain non-redundant information
about the sample.

4.3 Instance-level Consistency Learning
Due to the domain shift problem, the semantic-level information
from the classifier may not always be dependable. We further ex-
plore the finer knowledge in the form of instance-level information
for neighborhood consistency learning as shown in Figure 2(d).

After feeding the target batches to the network, we obtain the
feature embeddings of weakly-augmented view 𝑧𝑤𝑎

𝑡 and strongly-
augmented view 𝑧𝑠𝑎𝑡 . Similar to section 4.2, the weakly-augmented
view is utilized for kNN retrieval and then neighborhood aggrega-
tion in the embedding-level, resulting in the weighted aggregated
embedding 𝑧𝑤𝑎 from Eqn. 7.

Instead of using semantic-level information from the classifier,
we explore instance-level classifiers with the help of source fea-
ture embeddings. Specifically, we utilize a memory bank to store
and update the weakly-augmented view of source embeddings in
V𝑠 = {𝑧𝑠,𝑖 |𝑁𝑠

𝑖=1} in each iteration. Then we calculate the similar-
ities between the strongly-augmented view of the given target
instance 𝑧𝑠𝑎𝑡 and 𝑖-th source instance z𝑠,𝑖 from V𝑠 by using a simi-
larity function 𝑠𝑖𝑚(·), which represents the dot product between 𝐿2
normalized vectors 𝑠𝑖𝑚(u, v) = u𝑇 v/∥u∥∥v∥. The calculated simi-
larities can be processed using a softmax layer, which generates a
distribution.:

𝑞𝑠𝑎𝑡,𝑖 =
exp(𝑠𝑖𝑚(z𝑠𝑎𝑡 , z𝑠,𝑖 )/𝑡)∑𝑁𝑠

𝑘=1 exp(𝑠𝑖𝑚(z𝑠𝑎𝑡 , z𝑠,𝑘 )/𝑡)
(11)

Alternatively, we can compute the similarities between theweighted
aggregated target embedding 𝑧𝑤𝑎

𝑡 in Eqn. 7 and source embedding
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z𝑖 as 𝑠𝑖𝑚(𝑧𝑤𝑎, z𝑖 ). The obtained similarity distribution can be ex-
pressed as follows:

𝑞𝑤𝑎
𝑡,𝑖 =

exp(𝑠𝑖𝑚(𝑧𝑤𝑎
𝑡 , z𝑠,𝑖 )/𝑡)∑𝑁𝑠

𝑘=1 exp(𝑠𝑖𝑚(𝑧𝑤𝑎
𝑡 , z𝑠,𝑘 )/𝑡)

(12)

where the temperature parameter 𝑡 regulates the sharpness of
the distribution. andwe empirically set it to 0.1. Finally, the instance-
level consistency regularization as shown in Figure 2 (d) can be
achieved by minimizing the correlation matrix C 𝑓 between 𝑞𝑠𝑎𝑡 and
𝑞𝑤𝑎
𝑡 to an identity matrix:

L𝑁𝐶𝐿−𝐼 = ∥C 𝑓 − I∥2, (13)

C𝑓 =
𝑞𝑠𝑎
𝑏,𝑡

· �̂�𝑤𝑎
𝑏,𝑡√︃

(𝑞𝑠𝑎
𝑏,𝑡

)2
√︃
(�̂�𝑤𝑎

𝑏,𝑡
)2
, (14)

where C 𝑓 is a square matrix with size the dimension 𝑁𝑠 . Intu-
itively, Eqn.13 shares a similar form as Eqn.9 but uses a different
classifier (instance-level) to calculate samples’ predictions.

Overall, we aim at regularizing both feature embedding and out-
put prediction invariant to neighborhood variations by pushing the
diagonal elements of the cross-correlation matrix fixed at 1. Mean-
while, we encourage the feature embedding of a sample having
the least redundancy by setting the off-diagonal elements of the
cross-correlation matrix to 0

4.4 Overall optimization for NCL
To summarize, our overall optimization objective of NCL can be
formulated as,

L𝑁𝐶𝐿 = L𝑠
𝐶𝐸 + 𝜆(L𝑡

𝑁𝐶𝐿−𝑆 + L𝑡
𝑁𝐶𝐿−𝐼 ), (15)

whereL𝑠
𝐶𝐸

is the cross-entropy loss for source labeled data,L𝑡
𝑁𝐶𝐿−𝑆

andL𝑡
𝑁𝐶𝐿−𝐼 are the neighborhood consistency learning loss for tar-

get unlabeled data in semantic-level and instance-level respectively.
𝜆 is a hyperparameter to balance the optimization between source
and target loss. The detailed optimization is shown in Algorithm 1.

Algorithm 1: Optimization for NCL
Input: a labeled source batch x𝑠 and an unlabeled target
batch x𝑡 . 𝑇𝑤 (·) and 𝑇𝑠 (·): Weak and strong augmentation
function. F (·) and C(·): encoder and classifier. V𝑠 and V𝑡 :
source and target memory bank.
Output: The model F (·) and C(·).
for 𝑡 = 1, 2, · · · , 𝑡𝑎𝑙𝑙 do

z𝑤𝑎
𝑠 = F (𝑇𝑤𝑎 (x𝑠 )) p𝑤𝑎

𝑠 = C(z𝑤𝑎
𝑠 )

z𝑤𝑎
𝑡 = F (𝑇𝑤𝑎 (x𝑡 )) p𝑤𝑎

𝑡 = C(z𝑤𝑎
𝑡 )

z𝑠𝑎𝑡 = F (𝑇𝑠𝑎 (x𝑡 )) p𝑠𝑎𝑡 = C(z𝑠𝑎𝑡 )
Compute p̂𝑤𝑎 by Eq.7
L𝑁𝐶𝐿−𝑆 with p𝑠𝑎𝑡 and p̂𝑤𝑎by Eq.9
Compute ẑ𝑤𝑎 by Eq.6
Compute q𝑠𝑎𝑡 and q̂𝑤𝑎

𝑡 by Eq.11 and Eq.12
L𝑁𝐶𝐿−𝐼 with q𝑠𝑎𝑡 and q̂𝑤𝑎

𝑡 by Eq.13
L𝑁𝐶𝐿 by Eq.15
Optimize F (·) and C(·)
Update V𝑠 and V𝑡 with z𝑤𝑎

𝑠/𝑡 and p𝑤𝑎
𝑠/𝑡

end

5 EXPERIMENT
5.1 Datasets
We conduct experiments on three widely used domain adaptation
classification benchmarks: Office-31 [26], Office-Home [32] and
VisDA17 [25]. Office-31 is a commonly used dataset for unsuper-
vised domain adaptation. It includes 4652 images of 31 classes from
three domains: Amazon (A), Webcam (W) and DSLR (D). Office-
Home presents a more demanding benchmark compared to Office-
31. It encompasses images of everyday objects categorized into four
domains: artistic images (Ar), clip art (Cl), product images (Pr), and
real-world images (Rw). The dataset comprises 15,500 images across
65 classes. VisDA17, on the other hand, is a large-scale dataset that
employs 152,409 2D synthetic images from 12 classes as the source
training set and 55,400 real images from MS-COCO as the target
set. These domains share 12 object categories, making it suitable
for domain adaptation tasks.

5.2 Implementation details
We adhere to the standard protocol of UDA [3, 35]), which involves
utilizing all labeled source samples and all unlabeled target samples
as training data. The reported testing results are the average accu-
racy over three random repeats with center-crop images. We adopt
ResNet-50 [6] on Office-31 and Office-Home dataset and ResNet101
on VisDA17 dataset. The models are initialized with the ImageNet
pre-trained weights. We use Pytorch as implementation framework.
We adopt Stochastic Gradient Descent (SGD) optimizer with learn-
ing rate of 1 × 10−3, weight decay 5 × 10−4, momentum 0.9 and
batch size 32. For optimization, we first pre-train themodel based on
source data only in Eqn 1 and initialize the memory bank for source
and target samples. Then, we train our NCL framework based on
Eqn. 15 with the hyperparameter 𝜆 set to 0.1 for all datasets. Also,
we set the number of neighbors 𝑘 = 5 for Eqn.6. For strong aug-
mentation, we adopt the strategy in Fixmatch [27]. The results of
existing methods in Table 1, 2, 3 refer to their respective papers.

5.3 Comparison with State-of-the-Arts
We compare our approach with the following baselines with state-
of-the-art performance. (1) source-only baseline that trains the
network using labeled source data and unlabeled target data respec-
tively, (2) existing UDA methods based on discrepancy minimiza-
tion, including CADA-P [9], ATM [11], RWOT [36] and DALN [1]
, (3) existing UDA based on pseudo-labeling and neighborhood
closeness, including CRST [40], SAFN [35], DTA [10], SHOT [14],
MCC [8], BNM [2], CaCo [7] and ATDOC [15]. Note that not all the
comparing methods report their results on all three benchmarks.

5.3.1 Results on Office-31. Results based on ResNet-50 are shown
in Table 1. Notably, 1) comparing to state-of-the-art neighborhood
PLmethods (e.g, ATDOC [15]), NCL significantly outperforms them
by 1.4% and boosts the performance substantially on difficult trans-
fer tasks such as A→W, D→ A, and W→A. It demonstrated our
hypothesis that (1) preserving neighborhood structure of target
data is important in PL-based methods. (2) Adding our consistency
learning regularization in semantic-level and instance-level is effec-
tive to mitigate the misclassified neighborhood issue. Comparing
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Table 1: Experiment results on Office-31 classification using ResNet-50. Best (bold red), second best (italic blue).
Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 [6] 78.3 70.4 57.3 93.4 61.5 98.1 76.5
SAFN+ENT [35] 90.7 90.1 73.0 98.6 70.2 99.8 87.1

CaCo [7] 92.4 90.3 73.2 98.6 72.8 100. 86.5
CRST [40] 88.7 89.4 72.6 98.9 70.9 100. 86.8
SHOT [14] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
CADA-P [9] 95.6 97.0 71.5 99.3 73.1 100. 89.5
ATM [11] 96.4 95.7 74.1 99.3 73.5 100. 89.8
MCC [8] 92.1 94.0 74.9 98.5 75.3 100. 89.1
BNM [2] 92.2 94.0 74.9 98.5 75.3 100. 89.2

ATDOC [15] 94.4 94.3 75.6 98.9 75.2 99.6 89.7
DALN [1] 95.4 95.2 76.4 99.1 76.5 100. 90.4
NCL (ours) 96.3 96.6 77.6 98.7 77.4 100. 91.1

Table 2: Experiment results on Office-Home using ResNet-50.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet-50 [6] 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
SAFN [35] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
CADA-P [9] 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
DCAN [13] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
SHOT [14] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
BNM [2] 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
MCC [8] 56.3 77.3 80.3 67.0 77.1 77.0 66.2 55.1 81.2 73.5 57.4 84.1 71.0

ATDOC [15] 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
DALN [1] 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8
NCL (ours) 58.9 78.6 82.6 69.2 79.4 78.6 67.2 57.1 82.3 73.1 58.7 85.6 72.6

Table 3: Experimental results on VisDA17 classification using ResNet-101.

Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean
ResNet-101 [6] 67.7 27.4 50.0 61.7 69.5 13.7 85.9 11.5 64.4 34.4 84.2 19.2 49.1
MinEnt [4] 88.6 29.5 82.5 75.8 88.7 16.0 93.2 63.4 94.2 40.1 87.3 12.1 64.3
SAFN [35] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
CRST [40] 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
DTA [10] 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
SHOT [14] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
RWOT [36] 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
BNM [2] 91.1 69.0 76.7 64.3 89.8 61.2 90.8 74.8 90.9 66.6 88.1 46.1 75.8
MCC [8] 92.2 82.9 76.8 66.6 90.9 78.5 87.9 73.8 90.1 76.1 87.1 41.0 78.7

ATDOC-NA [15] 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
NCL (ours) 97.1 88.5 90.0 65.2 96.7 92.9 90.1 81.5 94.6 89.5 89.0 58.8 86.2

to the recent discrepancy-based methods such as DALN [1], NCL
also achieves a performance boost by 0.7%.

5.3.2 Results on Office-Home. Result based on ResNet-50 are re-
ported in Table 2. Similarly conclusion can be drawn that NCL
shows consistent improvements on different discrepancy-based
methods such asDALN [1] and PL-basedmethods such as SHOT [14],
MCC [8], BNM [2], CaCo [7] and ATDOC [15].

5.3.3 Results on VisDA. Result based on ResNet-101 are reported
in Table 3. In more challenging large scale benchmark, NCL still
shows its consistent performance gains over previous state-of-the-
art. Comparing to other consistency regularization method such
as DTA [10], NCL shows a performance gain by 2.2%. Compared
to the neighborhood PL methods, NCL significantly outperforms

ATDOC [15] by 5.9 %. It is also worth noting that our NCL signif-
icantly boost the performance on several challenging categories
such as Bus (+ 13.1 %), Car (+ 6.5 %) and Person (+ 10.1 %).
5.4 Analysis
5.4.1 Feature visualization. We visualize the target embeddings of
(a) source model, (b) Neighborhood PL [15], and (c) NCL on Office-
31 W→A via t-SNE [21] in Fig.4(a-c). We qualitatively observe that
NCL could learn more discriminative and compact feature clusters
than the source model and PL-based methods.

5.4.2 Visualization on the Retrieval Neighbors. We visualize the top
3 nearest neighbors given an anchor based on the target features
from the source model on Office-31 A→W in Fig.3. We investigate
both success and failure cases to get extra insights into our method.
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For the first two-row, features from the source model could retrieve
the correct neighbors for the mobile phone and backpack with a
certain level of appearance and pose variations. However, in the last
row where the pose of that laptop sample is unusual, our method
might fail in those cases. The proposed uncertainty-aware weight-
ing on neighbor class consistency is to alleviate the misleading
learning by false neighborhood supervision.
5.4.3 How does uncertainty-aware weighting look like? To prove
our hypothesis that negative neighbors are prone to have high
entropy value (small weight), we compute the pairwise weight
from Eqn. 8 for all the neighbors (𝑘=2) on Office-31 A → W and
W → A and take an average over weights on positive pairs and
negative pairs respectively. From Fig.4 (f), we can see that positive
neighbor pairs have much higher weights during neighborhood
aggregation than negative pairs by 20% on average. It demonstrates
our hypothesis that uncertainty-aware weighting could alleviate the
false positive neighbors via assigning smaller weight in neighborhood
aggregation.
5.4.4 Impact of neighbourhood size 𝑘 . Neighborhood size 𝑘 is an
important parameter as it controls the amount of pairwise neighbor-
hood supervision. However, there is a trade-off between increasing
the neighboring diversity and increasing the risk of adding false
neighborhood supervision.We evaluate 𝑘 from {2, 5, 10} for our NCL
objective in Eqn. 15 on Office-31 A → W as shown in Fig.4(d). We
call our method with equally weighted neighborhood aggregation
as 𝑁𝐶𝐿𝑎𝑣𝑔 and our method with uncertainty-aware neighborhood
aggregation as 𝑁𝐶𝐿𝑤𝑒𝑖𝑔ℎ𝑡 . We observe that 𝑁𝐶𝐿𝑤𝑒𝑖𝑔ℎ𝑡 is more
robust to larger neighborhood size than 𝑁𝐶𝐿𝑎𝑣𝑔 . This is also con-
sistent with the intuition of uncertainty-aware weighting, which
aims to alleviate the misleading effect of false positive neighbors.
Based on the experiments, we empirically set the neighborhood
size 𝑘 to 5 for all the experiments, while our method is generally
robust to the 𝑘 .

Mobile 

Phone

Backpack

Laptop

Anchor Retrieved Neighbors

Figure 3: The top 3 nearest neighbors are given an anchor on
Office-31. (Green: positive sample; Red: negative sample).

5.4.5 Hyper-parameter sensitivity. We conduct the hyper-parameter
sensitivity analysis on the 𝜆 in Eqn. 15 on Office31 A → W. As Fig-
ure 4(e) shows, the performance is significantly improved when
𝜆 > 0. It illustrates that our method is robust to the wide range
of 𝜆. Note that we selected 𝜆 based on Office-31 and used these
unified hyper-parameters for all other datasets (e.g office-home
and VisDA17) without extra tuning. The consistent performance
gains on other datasets prove that our method is robust to this
hyperparameter.

Table 4: Ablation Study on office-31 for strong/weak augmentation.

L𝑁𝐶𝐿−𝑆 L𝑁𝐶𝐿−𝐼 𝑤 Strong Aug. Office-31
✗ ✗ ✗ ✓ 76.1
✓ ✗ ✗ ✓ 89.5
✓ ✗ ✓ ✓ 90.6
✗ ✓ ✗ ✓ 89.3
✗ ✓ ✓ ✓ 90.1
✓ ✓ ✓ ✗ 90.4
✓ ✓ ✓ ✓ 91.1

5.4.6 Ablation study on each component. We conduct ablation
study to verify the effectiveness of each components of NCL on
office-31 dataset in Table 4. First, we observe that neighborhood
consistency learning significantly boosts the performance on the
baseline in both semantic-level (+ 13.4 %) or instance-level (+ 13.2
%). Further, adding uncertainty-aware neighborhood aggregation
benefits both two consistency regularization. Finally, incorporating
all the components for optimization achieves the best performance
with 91.1 %. Specifically, the weak/strong augmentations could im-
prove our model with weak/weak augmentations from 90.4 % to
91.1 %. We claim that weak augmentation is more stable and thus is
used for k-NN retrieval and neighborhood aggregation. Strong aug-
mentation is to increase the sample variety for consistency learning.
Note that we set the neighborhood size 𝑘 to 3 in the ablation study.

(d)  Neighborhood size (e)  Lambda (f)  Uncertainty-aware weight

(a)  Source Only (b)  Neighborhood PL (c)  Ours

NCL-avg
NCL-weight

2 5 10

Figure 4: Analysis: (a-c) The t-SNE visualization of target fea-
ture (red) on Office-31 W→A. (d-e) Hyper-parameter sensi-
tivity experiments on Office-31 A→W. (f) Uncertainty-aware
weight visualization on positive and negative samples on
Office-31 A→W and W→A.

6 CONCLUSION
In this work, we propose a novel neighborhood consistency learn-
ing framework at both the semantic-level and instance level with
a new consistency objective function. Specifically, by computing
the correlation matrix between the target samples and their neigh-
borhood aggregation, and matching the correlation matrix to an
identity matrix, our objective function encourages semantic consis-
tency in the target neighborhood. Extensive experiments on three
UDA benchmarks demonstrate the effectiveness of our method.
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