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Abstract of the Dissertation

Correlation Discovery for Multi-view and Multi-label Learning

by
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Correlation indicates the interactions or connections across different instances. It exists in
a wide range of real-world scenarios such as scene understanding, social network, time-series data,
and human-object interactions. Correlation provides the unique and informative knowledge to reveal
the latent connections across instances, and it plays an essential and important role in the machine
learning field.

However, recovering and utilizing correlation is challenging. First, it is hard to explicitly
and clearly define the correlations, which leads to relatively small and high-level noise datasets.
Second, the correlation is task-specific, which cannot be generalized to more diverse tasks. This
challenge increases the cost of correlation learning and its down-stream applications. Third, even if
the correlation is given, how to efficiently utilize the learned/given correlations and enhance the final
performance is still difficult. This point has not been well-explored.

In this dissertation research, we investigate the techniques to effectively discover var-
ious kinds of correlations in machine learning tasks including multi-view learning, multi-label
learning, image/scene understanding, time-series data analysis, and human action recognition. Specif-
ically, we propose algorithms from the following perspectives: 1) designing correlation exploration
frameworks to automatically explore the label correlations in multi-label scenarios, 2) proposing
a multi-view fusion strategy which effectively dig the latent correlations across different views to
achieve high-accuracy human action recognition, and 3) exploring the inductive and unsupervised
graph representation learning task, which aims to preserve the correlation knowledge in graph struc-
tured objects. To demonstrate the effectiveness of the proposed algorithms, various experiments
on commonly used datasets have been implemented and the results show the superiority of our
algorithms over the other state-of-the-art methods.
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Chapter 1

Introduction

1.1 Background

Formally, correlation is a mutual relationship or connection between two or more things.

In our work, correlation denotes the interactions or connections across different instances. It exists in

a wide range of real-life environments. Correlation provides people with unique and informative

knowledge, which is always utilized in their daily decision making, learning, and planning procedures.

For example, if today is sunshine in summer, it is probably a hot day. Similarly, a cloudy weather

always reminds people to check if there will be raining. These correlations are explicit and explicable,

which become the general common senses. More diverse correlations also exist. In human action

analysis scenario, human-object interaction (e.g., checking watch, drinking water, and fighting)

contains different types of correlations which provide information for down-stream tasks such as

action recognition, prediction, and interaction. In social network (e.g., Facebook, Twitter, and

LinkedIn), the background of the users (e.g., education, experience, career, and the achievements),

the posters (e.g., sentences and images), and the likes/comments from their connected friends

contain various correlations in different aspects. This information could benefit the recommendation,

advertising, and searching performances.

To further improve the learning performance of machine learning applications, effectively

exploring and utilizing the correlation knowledge are the feasible and promising research directions.

Conventional machine learning methods mainly focus on exploring the given samples separately,

which cannot well solve the correlation learning challenges. A small partial of machine learning

methods (e.g., clustering and transfer learning) explore the data distribution knowledge from unla-

beled samples to enhance the learning performance. However, most of these methods explore the

1



CHAPTER 1. INTRODUCTION
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Figure 1.1: The organization of our thesis. We explore correlations from different data formats in
various machine learning tasks. Specifically, we explored multi-label learning, multi-view learning,
and graph structural object representation learning by conventional and deep learning-based strategies.

distribution information in pure feature space based on single and simple metrics (e.g, Euclidean

distance and Cosine distance). While, these metrics cannot handle sophisticated correlations and

various correlation types. In addition, an instance could have multiple modalities/representations

(e.g., visual, semantic, and attributes). Exploring the correlation in one feature space may not be

comprehensive. To this end, how to explore the correlations in different views is also a potential

point in correlation learning.

In summary, compared with traditional machine learning methods, recognizing and utiliz-

ing correlations and improving the down-stream applications are difficult tasks. The major challenges

are listed below:

• The correlation is hard to explicitly and clearly define. For example, how to define the

correlation between sunshine and hot. A naive correlation score could be one solution,

however, the score is not reliable such as in winter. Thus, the fixed correlation score could

lead to negative influence for final performance.

• The correlation is task-specific, which means different tasks (e.g., scene understanding and

object detection) have totally different labels and correlations. Existing datasets cannot be

generalized to more diverse tasks. This challenge causes relatively small and high-level noise

datasets, and also makes correlation learning costly for real-world deployments.

• It is still difficult to effectively and efficiently utilize the given/learned correlation to reli-

ably improve the performance. The correlation and the feature representation should be

complementary to each other instead of contradictory.
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In this thesis, we concentrate on solving the aforementioned challenges. Figure 1.1

illustrates the topic structure of our thesis. Specifically, we investigate the techniques to effectively

discover various kinds of correlations in machine learning tasks including multi-view learning,

multi-label learning, and graph representation learning for different applications such as image/scene

understanding, human action recognition, and graph data classification. The details are listed below:

• We designed frameworks to automatically predict multiple labels from a single instance. The

frameworks are used for multi-label learning and scene understanding tasks. Label correlations

residing inside each instance and across different instances are learned. Then, the correlation

is further used for multi-label prediction tasks.

• We proposed a view-correlation discovery network for RGB-Depth action recognition. Our

approach fully digs correlations across RGB and depth views, and the view-specific prediction

results are effectively fused and achieved higher performance.

• We proposed a general framework for inductive and unsupervised representation learning on

graph structured objects which contain sophisticated instance representations and correlation

types. Instead of directly dealing with the computational challenges raised by graph similarity

evaluation, a novel sampling, encoding, and embedding framework is proposed.

1.2 Related works

1.2.1 Multi-label Learning

In real-world applications, one object could relate to tens or hundreds of semantic de-

scriptions or attributes. For instance, an image illustrates “It is a sunny day with blue sky and a

lake/water nearby”. This image contains multiple labels (i.e., sunny, blue sky, and water) selected

from a large number of candidate labels. Compared to single label classification tasks, multi-label

tasks assume multiple labels exist in each instance. There are numerous real-world applications that

require multi-label learning including data mining [5], large-scale image retrieval [6, 7], multi-label

classification [6, 7], natural language processing [8], and advertising [9]. As a result, multi-label

learning has become an attractive and critical area of research in recent years [10, 11, 12, 13, 14].

There are multiple unique challenges in multi-label learning. First, the available datasets

(e.g., SUN [15], CUB [16], and AWA [17]) are relatively small, since multi-label data collection

and labeling procedures are labor intense and expensive compared with the single-label setting. In
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addition, the labels in most datasets follow a long-tail distribution. It means that some “common”

labels (e.g., blue sky, outdoor, and trees) are much more prevalent than “rare” labels (e.g., fight

and fire). For instance, the SUN dataset has 14340 samples in total. The most common label (i.e.,

Man-made) shows up 8089 times, while the rarest label (i.e., Fire) only shows up 73 times. The

significant unbalanced training samples could negatively affect the learning performance. Moreover,

multi-label datasets suffer from high-level label noise due to the subjective nature of the labels

(e.g., hot, warm, and stressful). It is hard to obtain consistent label results since different people

hold different opinions. To this end, more robust and noise insensitive models are required for

multi-label learning tasks. Second, correlation is the most essential knowledge to achieve high

performance prediction. There always exists certain trends between labels, for instance, “Moist”

and “Dry” should not exist in the same time, but the pairs “Dry-Desert” and “Moist-Water” usually

emerge simultaneously. Meanwhile, there are no strong correlations across “Water”, “Stone”, and

other labels. These label correlations are crucial for making accurate predictions and could improve

performance significantly [18, 19]. Nevertheless, this syntactic knowledge is not available in most

existing datasets. Moreover, creating the correlation/syntactical map would require well-trained

experts with task-specific definitions, meaning that the created maps would not be easily generalized

to other similar applications. This specificity considerably limits the potential applications of existing

approaches.

To solve these challenges, semi-supervised multi-label learning [20, 21, 22, 23, 24, 25]

is a practical solution to enhance the learning performance by exploring unlabeled samples. [26]

proposed an error correcting output correcting scheme to achieve the multi-class heterogeneous

domain adaptation. [27] learned a low-rank kernel strategy which eliminates the noise and enhances

the representation ability. [28] proposed a reliable graph learning strategy. It obtains robust graphs by

adaptively removing errors and noise from the original samples. [29] mapped the data into a higher

dimensional space and deployed a multiple-kernel-based algorithm for the recommendation system.

1.2.2 Multi-view Learning

Multi-view learning aims to integrate complementary information from different views,

where the views refer to various feature representations, modalities or sensors. Most existing methods

focus on analyzing static multi-view data (e.g., image, description, and attributes) to improve the

performances of down-stream tasks including classification, clustering, detection, and segmentation.

It is explored in a wide range of applications such as action recognition, object detection, semantic

4



CHAPTER 1. INTRODUCTION

segmentation, and information retrieval [30, 31, 32, 33, 34]. It has become attractive and urgent as

the increasing multi-modal sensors are widely deployed in a great number of real-world applications.

Multi-view learning contains several challenges compared with a single-view scenario.

First, the feature domains of different views are heterogeneous. They have significant various feature

distributions. Naively fusing multi-view features (e.g., concatenation and summation) could induce

a negative effect and hurt the performance. In addition, it is a common situation where one or

more views are missing such as sensor malfunction, equipment deficiency, and signal loss in data

transformation.

Conventional research efforts [35, 36, 37, 38, 39] mainly utilize effective feature extraction

approaches to obtain view-specific representation first, then deploy fusion mechanism to integrate

these representations together. However, these methods assume data are accessible for all the

views, yet without considering the practical and common incomplete view scenarios. Moreover,

different views could provide class-level unique distinctiveness, and it is crucial to explore the

correlation across action classes and views to further improve the learning performance. Hence, their

performances inevitably degrade when dealing with partial multi-view data.

1.2.3 Graph Representation Learning

Graph representation learning has been the core problem of machine learning tasks. Given

a graph structured object, the goal is to represent the input graph as a dense low-dimensional vector so

that we are able to feed this vector into off-the-shelf machine learning or data management techniques.

Consider graph contains comprehensive structural/correlation information across different instances,

it is an ideal data format to fully explore and utilize the correlation knowledge to further improve

the performance of a wide spectrum of downstream tasks such as classification [40], anomaly

detection [41], information retrieval [42], and many others [43, 44].

Different from consistent data formats (e.g., image, video, and audio), the format of graph

structural data is inconsistent. It is based on the number of nodes (i.e., instances) and the edges (i.e.,

correlations) between these instances. To this end, it is difficult for conventional machine learning

or deep learning methods to process graph data. This unique character makes graph representation

learning become more challenging compared with conventional data formats. In addition, inductive

and unsupervised graph learning is a critical technique for predictive or information retrieval tasks

where label information is difficult to obtain. It is also challenging to make graph learning inductive

and unsupervised at the same time, as learning processes guided by reconstruction error based loss
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functions inevitably demand graph similarity evaluation that is usually computationally intractable.

Previous deep graph learning techniques mainly focus on transductive [45] or supervised

settings [42]. A few recent studies focus on autoencoding specific structures, such as directed

acyclic graphs [46], trees or graphs that can be decomposed into trees [47], and so on. From the

perspective of graph generation, [48] propose to generate graphs of similar graph statistics (e.g.,

degree distribution), and [49] provide a GAN based method to generate graphs of similar random

walks.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows.

In chapter 2, we develop a generic multi-label learning framework based on Adaptive

Graph and Marginalized Augmentation in a semi-supervised scenario. Generally speaking, our

approach makes use of a small amount of labeled data associated with a lot of unlabeled data to boost

the learning performance. An adaptive similarity graph, a marginalized augmentation strategy, and

a feature-label autoencoder is proposed to solve the challenges. In addition, a deep learning-based

generative correlation discovery network is proposed. Specifically, a generative model is utilized

to conditionally generate more diverse samples, and a correlation discovery network is designed to

automatically learn the label correlations and further improve the prediction performance.

In chapter 3, we propose a Generative Multi-View Action Recognition framework for

RGB-D action recognition. Specifically, an adversarial generative network is leveraged to generate

one view conditioning on the other view, which fully explores the latent correlation in both intra-view

and cross-view aspects. Moreover, an effective View Correlation Discovery Network is proposed to

further fuse the multi-view information in a higher-level label space.

In chapter 4, we propose a general framework SEED (Sampling, Encoding, and Em-

bedding Distributions) for inductive and unsupervised representation learning on graph structured

objects. Given an input graph, the SEED framework samples a number of subgraphs whose recon-

struction errors could be efficiently evaluated, encodes the subgraph samples into a collection of

subgraph vectors, and employs the embedding of the subgraph vector distribution as the output vector

representation for the input graph.

In chapter 5, we present a conclusion of our methods.
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Chapter 2

Multi-label Learning

2.1 Background

In real-world applications, one object could relate to tens or hundreds of semantic de-

scriptions or attributes. For instance, an image illustrates “It is a sunny day with blue sky and a

lake/water nearby”. This image contains multiple labels (i.e., sunny, blue sky, and water) selected

from a large number of candidate labels. Compared with single label classification tasks, multi-label

tasks assume multiple labels exist in each instance [10, 11, 12, 13, 14]. As illustrated in Figure 2.1,

multi-label classification aims to accurately predict all positive labels from the given instances. It

is a more challenging, practical, and potential classification task for a large number of real-world

applications, e.g., video concept recognition [50], image annotation [14], retrieval, and natural

language processing [51].

There are several unique challenges in multi-label scenarios. First, the available datasets

(e.g., SUN [15], CUB [16], and AWA [17]) are relatively small. Since multi-label data collection

and labeling procedures are labor intense and expensive compared with the single-label setting. In

addition, multi-label datasets suffer from high-level label noise due to the subjective nature of the

labels (e.g., hot, warm, and stressful). It is hard to obtain consistent label results since different people

hold different opinions. Third, the labels in most datasets follow a long-tail distribution. It means that

some “common” labels (e.g., blue sky, outdoor, and trees) are much more prevalent than “rare” labels

(e.g., fight and fire). For instance, the SUN dataset has 14, 340 samples in total. The most common

label (i.e., Man-made) shows up 8, 089 times, while the rarest label (i.e., Fire) only shows up 73

times. The significant unbalanced training samples could negatively affect the learning performance.

More sophisticated and specifically designed models are required for multi-label learning tasks.
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Figure 2.1: Concept of multi-label classification. Compared with conventional classification tasks,
multi-label learning assumes a single instance could contain multiple positive labels. Multi-label
classification aims to accurately predict all the labels from the given instance.

One straightforward solution for multi-label learning is utilizing multiple single-label

learning classifiers to recover each label individually [14]. However, the latent correlations between

labels are not considered in this strategy (e.g., blue sky usually show up with outdoor). Label

relation plays an important role for multi-label learning [52]. [53] designed a contextual merging

step based on the output of each classifier to leverage the correlations. [54] handles the missing label

problem via learning the semantic structural information to build the label correlations. It projects

samples to the semantic space with an effective semantic descriptor. [55] learned the labels as well

as the correlations simultaneously in the training stage for multi-view scenarios. [56] designed a

dependence maximization strategy for multi-label dimension deduction based on Hilbert-Schmidt

independence criterion. [57] proposed a non-negative matrix factorization to obtain robust prediction

performance. [58] proposed a model which automatically identifies easy and hard prediction samples.

It then uses the obtained easy samples to enhance the prediction of hard samples. However, most of

these approaches are still in supervised learning manner which cannot perform well in the training

data shortage situation.

In addition, although training classification models with large-scale multi-label datasets is

one solution, as introduced above, generating such multi-label datasets is a challenging and expensive

task. However, relevant and unlabeled data are easy to obtain. Based on this, semi-supervised

learning [20, 21] is a practical solution to enhance the learning performance by exploring unlabeled

samples. Semi-supervised learning utilizes a small-scale well-labeled samples associated with a

large-scale unlabeled samples to improve the learning performance [59, 21, 22, 20, 60, 61]. There

are various ways to achieve semi-supervised learning. A detailed introduction can be found in [21].

Its essential insight is to explore the feature distribution knowledge from unlabeled samples and
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Figure 2.2: Concept of the adaptive graph semi-supervised learning strategy. The representations of
labeled and unlabeled samples, and the adaptive graph are jointly optimized, which could effectively
handle the graph robustness and model effectiveness challenges.

improve the effectiveness of down-stream tasks. [22] filters the training sets and obtains a model

which is independent to the training initialization procedure. [62] utilized the hashing and transfer

learning strategies to achieve transfer hashing for privileged information. It could handle data sparsity

issues in the deep learning framework. [63] proposed a self-supervised mechanism which contains

two losses to achieve semi-supervised learning scenario. [64] utilizes a differentiable surrogate of

the non-differentiable Hungarian algorithm to achieve the view-specific alignment. [65] effectively

utilizes the knowledge from both feature and label space. The pairwise sample assignments are

minimized across each data point. However, most of the aforementioned approaches mainly handle

the single-label classification tasks, which ignore the unique challenges of multi-label setting such

as the “long-tail” label distribution issue, and the latent label correlation aspect, which lead to low

prediction performance.

2.2 Adaptive Graph and Marginalized Augmentation

2.2.1 Motivation

Due to the aforementioned challenges, a specifically designed semi-supervised multi-label

learning approach is potential for solving the challenges. From all the various semi-supervised

strategies, graph-based approaches [66] have attracted great attention due to their high performance.

It deploys an affiliate graph to explore the latent data structure residing in both source and target
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samples. Although graph-based methods achieve high performance, there is a main drawback.

Specifically, the classification performance heavily depends on the quality of the affiliate graph,

while it is difficult to always obtain an effective affiliate graph. Moreover, most graph generation

methods are parameter sensitive. Thus, the same set of graph generation configurations could not

achieve the best performance for other resources. For example, the graph which is generated based

on the original sample representation which could be influenced by noise and the configurations of

the similarity metrics. These factors could significantly affect the graph generation and decrease the

final performance.

Previous works exploited adaptive graphs to handle the sensitivity issue [22, 23, 24, 25, 67].

The concept is shown in Figure 2.2. The main idea of adaptive graph is to jointly update the learned

representations of labeled and unlabeled samples and the graph, which could effectively handle the

graph robustness and further improve the performance. An adaptive affiliate graph is proposed in [68]

which is adaptively optimized in the training stage. [32, 69] deploy graph optimization strategy for

unsupervised feature selection and representation learning tasks. [70] extended this approach to

image and video scenarios. [71] deployed affiliate graph associated with subspace learning to learn

more distinctive feature representation and helped the adaptive graph learning. A Gaussian random

field and a harmonic function were proposed to improve the performance [20]. [26] proposed an error

correcting output correcting scheme to achieve the multi-class heterogeneous domain adaptation.

[27] learned a low-rank kernel strategy which eliminates the noise and enhances the representation

ability. [28] proposed a reliable graph learning strategy. It obtains robust graphs by adaptively

removing errors and noise from the original samples. [29] mapped the data into a higher dimensional

space and deployed a multiple-kernel-based algorithm for recommendation system. However, most

of the graph based approaches still rely on the similarity measurement in either the feature space or a

learned subspace. The performance of this strategy is easily affected by noise and outliers. Moreover,

most of the aforementioned approaches mainly handle the single-label classification tasks, which

ignore utilizing the latent label correlation knowledge residing inside the samples which is crucial

for multi-label setting.

Augmenting samples from the auxiliary domain is a promising direction for multi-label

learning. Marginalized Corrupted Features (MCF) is an effective and efficient feature augmentation

strategy. MCF “corrupts” existing samples and “generates” infinite artificial samples for model

training [72]. It is specifically designed for the situation in which only limited training samples are

available. More details are introduced in [73]. [74] proposed a marginalized Denoising Auto-encoder

(mDAE) approach for non-linear representation learning. mDAE achieves similar or even better
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Figure 2.3: Framework of AGMA approach. A visual-label encoder, P , maps data from visual space
to label space. An adaptive affinity graph, S, is adaptively optimized based on both label space and
feature space, which also explores the pairwise latent connections across both labeled and unlabeled
data. A marginalized feature augmentation strategy is further deployed to extend the feature space
and enhance the model robustness. The predicted label matrix F , the adaptive graph S, and the
encoder P are jointly optimized which helps the model to obtain the best and reliable performance.

performance with much fewer training samples. [75] proposed a Regularized Marginalized Cross-

View learning (RMCV) framework with marginalized denoising autoencoder, which effectively

improves the model robustness. However, these methods either focus on representation learning

tasks or supervised classification tasks which cannot effectively explore unlabeled data.

In this thesis, a novel and generic multi-label learning framework via Adaptive Graph

and Marginalized Augmentation strategy (AGMA) in semi-supervised scenario is proposed. The

framework is shown in Figure 2.3. The core insight is jointly propagating the labeled and unlabeled

data by an adaptive graph and seeking an effective and robust visual-label encoder with marginalized

feature augmentation strategy. Such two strategies could assist each other to enhance the final

performance. The main contributions of this work are listed below:

• An adaptive graph is proposed to explore the latent correlations of labeled and unlabeled

samples. It is jointly updated with other components to obtain the best performance.

• A feature-label autoencoder is proposed to project the samples between label space and feature

space. In addition, this framework is able to fully explore the feature-label connection and

reduce the computational cost in the testing stage.

• A marginalized feature augmentation strategy is deployed which extends infinite samples from

the limited samples and further improves the model robustness.
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Table 2.1: Symbol Description Table

Symbol Description

xi, xj Feature vector of i-th and j-th samples.

Xl, Xu Feature matrix of labeled and unlabeled samples.

X X = [Xl, Xu].

fi, fj Predicted label vector of xi and xj .

Fl, Fu Predicted multi-label of Xl and Xu, and F = [Fl, Fu].

yi, yj Groundtruth label vector of xi and xj .

Yl Groundtruth label of Xl.

d, dl Dimensions of feature space and label space.

S Adaptive affinity graph.

LS Graph Laplacian matrix of S.

P Visual-Label Encoder, and Label-Visual Decoder is P>.

nl, nu Number of labeled and unlabeled samples, n = nl + nu.

λ, µ Trade-off parameters.

δ Gaussian distribution variance.

• An optimization approach is designed to solve all variables. Five datasets are deployed in the

experiments and the results illustrate the efficiency and effectiveness of the model.

AGMA is an extension of our previous research work [71]. There are three-fold modifi-

cations to improve the performance. First, we deploy an autoencoder strategy to directly project

the samples between feature space and label space. It avoids the negative influence from the un-

controllable latent subspace of [71]. Second, a marginalized augmentation approach is designed to

extend the feature distribution for further improving the performance. Third, our approach is efficient

in inferring step, since our model is able to project the new samples from feature space to label

space without extra optimization process. Extensive experiments indicate that AGMA achieves better

performance. In the following sections, we introduce related works including semi-supervised and

multi-label learning. Section 2.2 introduces the details of our model. Experiments and analysis are

presented in section 2.3. Conclusion is provided in Section 2.6.

2.2.2 Conference Version Revisit

In this section, we first briefly present the preliminaries of multi-label learning and the

framework of our previous research work, AG2E [71], then we will derive our AGMA approach.
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The notations utilized in this work are summarized in Table 2.1. Scale values or vectors

are represented by lowercase letters and the matrices are illustrated by uppercase letters. Xl ∈ Rd×nl

is the feature matrix of labeled data, where Xl = [x1, x2, · · · , xnl
]. d is the feature dimension, nl

is the sample number. xi ∈ Rd represents a feature vector of the i-th sample. Yl ∈ Rdl×nl is the

ground truth label matrix of Xl, where dl is the label dimension. Yl = [y1, y2, · · · , ynl
] and yi ∈ Rdl

represents a label vector. Similarly, Xu ∈ Rd×nu is the feature matrix of unlabeled data. Fl and Fu

are the predicted label matrix of Xl and Xu. Fl = [f1, f2, · · · , fnl
] and Fu = [f1, f2, · · · , fnu ]. In

semi-supervised multi-label setting, Xl, Yl and Xu are given. The goal of our approach is to obtain

Fu as accurate as possible.

Conventional semi-supervised multi-label learning methods obtain label propagation based

on a pre-defined affiliate graph [76]. This approach assumes that the pairwise samples which have

high similarity scores should have similar multiple labels. In this scenario, the pre-defined affiliate

graph directly determines the recovered label. However, the quality of the affiliate graph is easily

affected by several aspects including different similarity metrics (e.g., Euclidean and Cosine distance),

the metric configurations, and the feature/label noise. To avoid this limitation, adaptive graph-based

methods are explored to automatically obtain the best graph.

Our previous work [71] learns a low-dimensional subspace to obtain distinctive representa-

tions. An adaptive affinity graph is jointly updated based on the representations. The main objective

function is shown below:

min
F,S,P

n∑
i,j=1

‖fi − fj‖22sij + µ
n∑

i,j=1

‖Pxi − Pxj‖22sij ,

s.t. Fl = Yl, S ≥ 0, S1 = 1,

(2.1)

where S ∈ Rn×n is the similarity matrix across all samples, each element sij is the obtained similarity

score between xi and xj . n = nl + nu. The constraint S1 = 1 is included, where 1 is a vector

of ones. It indicates the sum of the elements in each row is 1. This constraint controls the scale

of S and avoids a trivial solution (i.e., S = 0). The negative influence from outliers could also be

suppressed. In addition, instead of calculating the pairwise distances in the original feature space

(i.e., ‖xi − xj‖22sij), a linear projection P ∈ Rr×d is deployed to project the original feature vectors

to a low-dimensional subspace (i.e., ‖Pxi − Pxj‖22sij). Fl = Yl since Fl is the given ground truth.

F , P , and S are simultaneously optimized. By this way, S is adaptively learned based on both the

feature similarity and label similarity to achieve higher prediction accuracy.

There are several drawbacks in [71] may still limit its potential performance. First, it is
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difficult to guarantee that the learned subspace can obtain the most distinctive representations. High

level noise could reduce the quality of the subspace. Second, the approach does not well solve the

limited training data challenge. Third, if new/unseen samples should be predicted in the testing stage,

the whole optimization procedure has to be operated again to obtain the prediction result, F . To this

end, this pipeline is not efficient for large-scale applications.

2.2.3 Visual-Label Encoder via Adaptive Graph

To solve the aforementioned drawbacks, we improve the model by directly projecting the

data from feature space to label space. In our new model, a projection P is trained to output the label

prediction as shown below:

fi = Pxi. (2.2)

By this way, the connection between features and labels could be further tightened and

it avoids the potential negative influence from the arbitrary subspace. Furthermore, we assume the

predicted label vector could still recover the original features, inspired by the work of semantic

autoencoder [77], we let the encoder share the same weight as P . This strategy could further help

the model to reduce the computational cost and mitigate overfitting. To this end, we have

xi = P>fi. (2.3)

By replacing the second term in Eq. (2.1) with Eq. (2.2) and Eq. (2.3), we can have the

objective function shown below:

min
F,P,S

n∑
i,j=1

‖fi − fj‖22sij + µ

n∑
i=1

‖fi − Pxi‖22 + λ

n∑
i=1

‖xi − P>fi‖22,

s.t. Fl = Yl, S ≥ 0, S1 = 1,

(2.4)

where P projects visual feature to the label/semantic space and P> maps the predicted labels back to

the original feature space. The second and the third term calculate the encoder error and decoder

error respectively. λ and µ are the trade-off parameters which balance the weight between label

space and visual space. S is initialized as a dense matrix in the optimization process. It gradually

converged to a sparse matrix due to the constraint S1 = 1. The sparsity of S is influenced by the

data distribution of different datasets.
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To make Eq. (2.4) more compact and efficient to solve, we rewrite Eq. (2.4) as a matrix

format which is shown below:

min
F,P,S

tr(FLSF>) + µ‖F − PX‖2F + λ‖X − P>F‖2F,

s.t. Fl = Yl, S ≥ 0, S1 = 1,

(2.5)

where tr(.) indicates the matrix trace calculation which is the sum of the main diagonal elements.

LS ∈ Rn×n is the Laplacian matrix. LS = D − S where D ∈ Rn×n and Dii =
∑n

i=1 sij .

X = [Xl, Xu] and F = [Fl, Fu].

2.2.4 Generic Encoder Learning via Marginalized Augmentation

As mentioned in the above section, the long-tail label distribution is a common and one

of the main challenges of multi-label learning tasks. Long-tail label distribution means some labels

only have very limited training samples, while some labels dominate the whole label space. This

challenge also suppresses the learning performance. To address this problem, we explore the idea of

Marginalized Corrupted Features (MCF) [72]. It effectively extends/enlarges the feature distribution

by corrupting the existing training examples with a fixed noise distribution. By this way, the feature

distribution gaps between samples could be filled up.

Given a feature vector xi ∈ Rd. We let xki (k = {1, 2, · · · , d}) represent the value of each

dimension of xi. MCF assumes that the augmentation distribution factorizes over all dimensions of

xi. It considers each individual distribution as a combination of a set of natural exponential family:

p(x̃i|xi) =

d∏
k=1

PE(x̃ki |xki ; ηk), (2.6)

where x̃i is the corrupted version of xi. ηk is the augmentation distribution parameter on the

dimension k. MCF constrains E[x̃i]p(x̃i|xi) = xi, where E(x̃i) is the expectation of x̃i. It means that

the expectation of the augmented features should be the same as xi.

In our model, all the samples from labeled and unlabeled sets are utilized to obtain the

corrupted features. Given the whole samples D = [(xi, fi)]
n
i=1, assume we augment the samples

M times and obtain the augmented features x̃im (m = 1, 2, 3, . . . ,M ). Then, our model can utilize

these features D̃ to train any classification models by minimizing the equation below:

L(D; Θ) =
n∑
i=1

1

M

M∑
m=1

L(x̃im, fi; Θ), (2.7)
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where Θ is the model parameters with x̃im ∼ p(x̃im|xi), and L(xi, fi; Θ) is the objective function of

a proposed model. However, such approach is not elegant and could increase the computational cost

significantly. To this end, the limiting case in which M →∞ can be used for Eq. (2.7) as follow:

L(D; Θ) =
n∑
i=1

E[L(x̃i, yi; Θ)]p(x̃i|xi). (2.8)

where E(.) is the expectation of the objective value. Minimizing Eq. (2.8) under the corruption model

is the crucial module for MCF. The solution of Eq. (2.8) relies heavily on the objective function and

the augmentation distributions. Coincidentally, for projections that employ exponential or quadratic

objective function, the expectations in Eq. (2.8) could be obtained for all augmentation distributions

in the natural exponential family [72]. To this end, we modify Eq. (2.5) based on the MCF strategy

and the expression can be formulated as follows:

min
F,P,S

tr(FLSF>) + µE
[
‖F − PX̃‖2F

]
+ λ‖X̃ − P>F‖2F,

s.t. Fl = Yl, S ≥ 0, S1 = 1.

(2.9)

where X̃ is the corrupted features of X . We preserve the quadratic objective loss and deploy the

isotropic Gaussian distribution to augment the feature with mean xi and variance δ2I. In this way,

the expectation can be written as a simple case as follows:

E
[
‖F − PX̃‖2F

]
= P

(
E[X̃]E[X̃]> + V [X̃]

)
P> − 2tr

(
Y E[X̃]

)>
P> + tr

(
FF>

)
,

= P tr
(
XX>

)
P> − 2

(
Y X

)>
P> + δ2nPP> + tr

(
FF>

)
,

(2.10)

where V [X̃] is a diagonal matrix storing the variance of X . It is the standard l2-regularized quadratic

objective function. Combined with other terms, Eq. (2.7) can be shown as follows:

min
F,P,S

tr(FLSF>) + µtr(PXX>P>)− 2µtr(FX>P>)

+ µtr(δ2nPP> + FF>) + λ‖X − P>F‖2F,

s.t. Fl = Yl, S ≥ 0, S1 = 1.

(2.11)

Eq. (2.11) is the complete objective function of our model. Deploying MCF does not

increase the computational cost significantly since the complexity of the training algorithms remains

linear in n. Our model is easy to degrade to non-augmented version. From Eq. (2.11), we observe that

Eq. (2.11) becomes exactly the same as Eq. (2.5) when δ = 0. We will further prove the effectiveness

of marginalization augmentation by tuning the value of δ.
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2.2.5 Model Discussion

Compared with our previous work, AG2E [71], our AGMA approach has another extra

advantage. When new/unseen samples come, our model could directly infer their labels by Fnew =

PXnew, where Xnew are the new samples and Fnew are the predicted labels. Such a strategy avoids

the optimization procedure. Although the feature distribution knowledge of new data could not be

fully explored, it is an effective and efficient way and the performance is still high and stable since P

is well trained. More theoretical analysis is provided in Section 2.2.7, and the empirical evaluation is

shown in Section 2.3.8.

The adaptive graph strategy is also deployed in semi-supervised domain adaptation scenario.

Compared with domain adaptation setting, our approach is able to handle domain shift issues between

labeled and unlabeled samples, which is similar to domain adaptation approaches. While, there

are several differences between them. Conventional domain adaptation approaches explicitly learn

the domain-invariant representation, while our approach achieves domain adaptation by exploring

the sample similarities across different domains and adjusting the similarity matrix. Moreover,

conventional methods mainly diminish the domain shift only in feature space, while our approach

adaptively explores the similarities in both feature space and label space.

2.2.6 Solving Objective Function

Three variables in Eq. (2.11) are required to be optimized. It is difficult to obtain an explicit

solution. We adopt the Alternative Directions Method of Multipliers (ADMM) [78] to solve the

problem. ADMM is driven by alternatively optimizing the equation with respect to P , S, and F . The

pseudocode of the optimization procedure is provided in Algorithm 1. P0 is the initialization of P , it

is initialized based on the objective function min
P0

‖Yl − P0Xl‖2F + µ0‖P0‖2F , where µ0 is a trade-off

parameter and empirically set to 100. Then Fu is initialized by Fu = PXu. After that, ADMM

is deployed to update one variable each time where other variables are fixed. All the variables are

iteratively optimized until the objective value of Eq. (2.11) is convergent. We introduce the details of

the optimization procedure below:

Update P: When others are fixed, Eq. (2.11) can be written as below:

min
P

tr(PXX>P>)− 2tr
[
(FX>)P>

]
+ tr

[
δ2nPP> + FF>

]
+
λ

µ
‖X − P>F‖2F. (2.12)

To obtain the optimized point, we assign the derivation of Eq. (2.12) with respect of P to
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Algorithm 1. Solution to Eq. (2.11).

Input:

labeled and unlabeled feature matrices Xl and Xu,

label matrix of Yl, Gaussian distribution variance δ,

trade off parameter µ, λ and convergent threshold ε.

Output:

The recovered label Fu, semantic projection P .

Initialization:

Train min
P
‖Yl − P>Xl‖2F + µ‖P‖2F and initial Fu = P>Xu,

Obtain F by concatenating Yl and F = [Yl, Fu].

Optimization:

1: while not converged do

2: Update P(k+1) from the solution of (2.14);

3: while not converged do

4: Update Si(k+1) using Eq.(2.16);

5: end while

6: Calculate Ls = Ds − (S + S>)/2, Dsii =
∑

i(Sij + Sji)/2;

7: Update Fu using Eq. (2.21), given others fixed;

8: k = k + 1;

9: Obtain Lk, which is the objective value of Eq. (2.11)

10: Check if |Lk−1 − Lk| < ε.

11: end while

zero and obtain:

2PXX> − 2
[
(FX>)

]
+ 2δ2nP +

2λ

µ
F (F>P −X>) = 0, (2.13)

then Eq. (2.13) can be simplified to the following equation:

(δ2nI +
λ

µ
FF>)P + P (XX>) = (1 +

λ

µ
)FX>. (2.14)

Since Eq. (2.14) is a Sylvester equation, the Bartels-Stewart algorithm [79] can be deployed

to efficiently solve the equation.

Update S: By ignoring other variables, Eq. (2.11) can be written as below:

min
S

Tr(FLSF>),

s.t. S ≥ 0, S1 = 1.

(2.15)
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S cannot be explicitly solved due to the two constraints S ≥ 0 and S1 = 1. We optimize

S row by row, based on this strategy, the equation can be written as follows:

min
S

n∑
i=1

‖fi − fj‖22sij =
n∑
i=1

ais>i , (2.16)

where ai = {aij , 1 ≤ j ≤ n} ∈ R1×n with aij = ‖fi − fj‖22, si is the i-th row of S. KKT [80]

approach can be used for solving this problem, then the updated graph S is obtained.

Update F: When others are fixed, the objective function can be written as follows:

min
F

tr(FLsF>)− 2µtr
[
(FX>)P>

]
+ µtr(FF>) + λ‖X − P>F‖2F,

s.t. Fl = Yl.

(2.17)

Since label matrix F is the concatenation of labeled and unlabeled data (i.e., F = [Fl, Fu]),

thus, we can decompose Eq. (2.17) and obtain the equation shown below:

min
Fu

tr([Fl, Fu]Ls[Fl, Fu]>)− 2µtr([Fl, Fu]X>)P>

+ µtr([Fl, Fu][Fl, Fu]>) + λ‖X − P>[Fl, Fu]‖2F,

s.t. Fl = Yl.

(2.18)

Meanwhile, Ls can also be decomposed as Ls =

Lll Llu

Lul Luu

. Then, Eq. (2.18) can be

further decomposed as shown below:

min
Fu

tr
(
FlLllF

>
l + FuLulF

>
l + FlLluF

>
u + FuLuuF

>
u

)
− 2µtr

[
(FlX

>
l + FuX

>
u )P>

]
+ µtr

(
FlF

>
l + FuF

>
u

)
+ λ‖Xu − P>Fu‖2F,

s.t. Fl = Yl.

(2.19)

To obtain the optimized point, we assign the derivation of Eq. (2.19) with respect of Fu to

zero and obtain:

(LulF
>
l )> + FlLlu + FuLuu + FuL

>
uu − 2µPXu + 2µFu + 2λP (P>Fu −Xu) = 0. (2.20)

By simplifying Eq. (2.20), Bartels-Stewart algorithm [79] can be used to solve the equation:

(µI + λPP>)Fu + FuLuu = (µ+ λ)PXu − FlLlu. (2.21)

We set a threshold ε, if the difference is less than ε, then we consider the optimization

process is converged. Then we stop the process and report the final performance.
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2.2.7 Complexity Analysis

In the optimization stage, updating P and F requires the Bartels-Stewart approach and

the complexity becomes O(d3) and O(n3) respectively. These steps have more efficient solution

by Coppersmith-Winograd algorithm [81] and the computational cost can be reduced to O(d2.37)

and O(n2.37). To this end, the sum of the complexity is O(td2.37 + tn2.37) where t is the iteration

number. The obtained computational cost is the cost for the whole optimization procedure. It could

fully explore the data structure from both labeled and unlabeled samples. However, as mentioned in

Section 2.2.5, we can utilize the learned projection P to directly infer the new/unseen samples (i.e.,

Fnew = PXnew). This strategy avoids the optimization procedure which is more efficient. By this

way, we reduce the complexity to O(n). It is more suitable for large-scale real-world applications.

The empirical evaluation in Section 2.3.8 further shows the time consumption which demonstrates

the efficiency of our approach in the testing phase.

2.3 Experiment

In this section, five real-world multi-label datasets are utilized. Then, we will introduce

the experimental settings in our work. To comprehensively compare our approach with the state-

of-the-art algorithms, we evaluate our AGMA approach as well as other baselines in both general

and zero-shot multi-label learning scenario. Zero-shot setting is more challenging which attempts to

recover labels from the “unseen” samples. The details will be introduced in Section 2.3.3. Finally,

we analyze some properties of our proposed methods.

2.3.1 Datasets and Experimental Setting

Five multi-label datasets including one emotion dataset, one acoustic dataset, and three

image datasets are explored. Brief introductions are listed as follows, and the statistical summary of

the datasets is listed in Table 2.2.

• SUN Dataset [15] is widely used in fine-grained scene understanding and high-level scene

recognition. It contains 14000 samples collected from 700 classes. Each sample has a

102-dimensional label vector which contains averagely 6.3 labels. The label value is in

{0, 0.33, 0.66, 1}, since there are three annotators label each image, and the dataset averages

the assigned label from all the annotators.
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Table 2.2: Datasets statistical summary

Datasets Setting Labeled Unlabeled Labels Ave

SUN [15]
General 6,387 6,513

102 6.3
Zero-shot 12,900 1,440

CUB [16]
General 4,374 4,468

312 31.4
Zero-shot 8,842 2,946

AWA [82]
General 12,154 12,141

85 15.0
Zero-shot 24,295 6,180

BIRD [83] General 322 323 19 1.1

EMO [84] General 391 202 6 1.9

• CUB Dataset [16] is an augmentation dataset derived from CUB-200 dataset [85]. It contains

200 categories of birds. There are 312 attribute label candidates. The elements in the label

vector are binary values, i.e., 0 and 1.

• AWA Dataset [82] is a large-scale animal attribute datasets, where more than 30, 000 samples

are collected from 50 animal categories. The label is a 85-dimensional vector with the

continuous element values from 0 to 100. There are around 15 labels of each sample.

• BIRD Dataset [83] contains the acoustic recordings collected from 19 different kinds of bird.

Each recording is around 10-seconds length. The recordings are paired with its attributes

assigned by several experts along with their confidence. Each label vector contains binary

value in {0, 1}.

• EMO Dataset [84] captures the music from 233 musical albums. It aims to test the music

emotion evaluation approaches. There are 593 songs where each song is extracted to a

30-seconds recording and classified to 6 emotions assigned by music experts.

For the image datasets (i.e., SUN, CUB, and AWA datasets), Very Deep Convolutional

Networks [86] pre-trained by ImageNet [87] is utilized to extract deep features. It obtains a 4096-

dimensional feature vector for each instance. We also evaluate GoogleNet [88] features on these

datasets and observe that different features may cause different performances, while our approach

always achieves high performance. For the BIRD dataset, we use the features provided by [83]. Both

the Rhythmic and the Timbre features provided by [84] are utilized for the EMO dataset.
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Table 2.3: Multi-label Classification Performance

Dataset Method Prec Recall F1 N-R mAP

SUN

Regression 0.6318±0.0070 0.1504±0.0011 0.2429±0.0016 100.0±0.0000 0.3907±0.0026
SSMLDR 0.5625±0.0021 0.1239±0.0011 0.2031±0.0045 67.8±2.0736 0.6315±0.0038
FastTag 0.6187±0.0251 0.1473±0.0027 0.2379±0.0083 101.0±0.4265 0.6935±0.0189

ML-PGD 0.3218±0.0178 0.1521±0.0009 0.2513±0.0010 100.2±0.3235 0.7013±0.0016
SAE 0.7415±0.0089 0.1976±0.0005 0.3123±0.0011 101.4±0.5477 0.6928±0.0019

AG2E 0.7460±0.0063 0.1625±0.0019 0.2669±0.0028 102.0±0.0000 0.7174±0.0013
Ours 0.7046±0.0144 0.2040±0.0015 0.3164±0.0018 102.0±0.0000 0.6821±0.0028

CUB

Regression 0.2728±0.0080 0.0317±0.0007 0.0568±0.0013 166.6±1.7889 0.2831±0.0035
SSMLDR 0.2162±0.0031 0.0399±0.0003 0.0674±0.0006 163.8±2.8636 0.2135±0.0033
FastTag 0.3231±0.0244 0.0496±0.0028 0.0860±0.0052 163.0±4.2426 0.2457±0.0255

ML-PGD 0.3029±0.0067 0.0448±0.0002 0.0781±0.0004 132.4±3.1937 0.4081±0.0049
SAE 0.2947±0.0062 0.0424±0.0007 0.0742±0.0014 175.6±5.4498 0.4020±0.0027

AG2E 0.3351± 0.0079 0.0525±0.0009 0.0908±0.0015 194.2±3.1195 0.4011±0.0027
Ours 0.3976±0.0048 0.0578±0.0007 0.1010±0.0009 200.4±1.1670 0.4115±0.0046

AWA

Regression 0.8198±0.0098 0.0819±0.0001 0.1489±0.0003 74.8±0.8366 0.9282±0.0003
SSMLDR 0.8085±0.0087 0.0948±0.0002 0.1698±0.0004 74.0±0.8366 0.8323±0.0031
FastTag 0.7848±0.0316 0.0857±0.0031 0.1545±0.0096 67.2±3.1852 0.8851±0.0183

ML-PGD 0.5283±0.0019 0.0631±0.0001 0.1127±0.0004 44.6±1.6733 0.9103±0.0001
SAE 0.9506±0.0010 0.1029±0.0005 0.1857±0.0007 75.2±0.8944 0.8630±0.0001

AG2E 0.7745±0.0096 0.1285±0.0016 0.2204±0.0027 71.8±1.0062 0.9211±0.0074
Ours 0.9013±0.0092 0.0971±0.0018 0.1766±0.0030 81.0±0.4472 0.9355±0.0073

EMO

Regression 0.3793±0.0053 0.9114±0.0118 0.5357±0.0069 6.0±0.0000 0.5431±0.0127
SSMLDR 0.3556±0.0048 0.8965±0.0094 0.5093±0.0078 6.0±0.0000 0.5590±0.0103
FastTag 0.3833±0.0198 0.9459±0.0215 0.5456±0.0272 6.0±0.0000 0.5894±0.0428

ML-PGD 0.3784±0.0079 0.9265±0.0078 0.5373±0.0090 6.0±0.0000 0.5677±0.0135
SAE 0.3923±0.0143 0.8389±0.0083 0.5346±0.0157 6.0±0.0000 0.5770±0.0153

AG2E 0.3995±0.0122 0.9714±0.0131 0.5762±0.0121 6.0±0.0000 0.5825±0.0181
Ours 0.4474±0.0080 0.8361±0.0230 0.5829±0.0118 6.0±0.0000 0.5962±0.0201

BIRD

Regression 0.0764±0.0078 0.3726±0.0367 0.1268±0.0128 12.8±0.7071 0.2364±0.0546
SSMLDR 0.0709±0.0052 0.3465±0.0282 0.1178±0.0093 12.2±0.7071 0.1436±0.0382
FastTag 0.1005±0.0144 0.3783±0.0421 0.1601±0.0153 15.6±1.1400 0.1643±0.0857

ML-PGD 0.0809±0.0089 0.3883±0.0267 0.1338±0.0134 15.4±1.0000 0.2423±0.0329
SAE 0.0964±0.0107 0.3665±0.0435 0.1526±0.0156 15.2±1.3038 0.1779±0.0480

AG2E 0.1021±0.0150 0.4529±0.0186 0.1653±0.0187 16.8±0.7786 0.2454±0.0466
Ours 0.1065±0.0131 0.5216±0.0181 0.1780±0.0143 18.0±0.0000 0.3519±0.0311

Traditional multi-label scenario and the zero-shot multi-label scenario [17, 89] settings are

deployed in our experiments. In the conventional setting, we randomly extract the samples from the

whole datasets and build a labeled set and an unlabeled set. Each set has half of the whole sample.

Our model is evaluated five times based on the randomly generated training/testing sets and report the

average performance. The standard deviation is also provided. Five-fold cross-validation is deployed

to tune the trade-off parameters λ and µ. The parameter sensitivity analysis will be introduced in the

experiments. We evaluate our methods as well as other state-of-the-art multi-label learning methods.

The brief introduction of all the baselines are shown below:

• Least Squares Regression (Regression) is a ridge regression approach. It obtains a projection
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based on the training samples and then recovers the target samples.

• Semi-Supervised Multi-Label Dimensionality Reduction (SSMLDR) [76] enlarges the

multiple label information from the labeled samples to the unlabeled samples. In addition, a

transformation matrix is proposed to obtain the distinctive low-dimensional representations.

• FastTag [90] proposes two linear projections that are simultaneously optimized in a joint

convex objective function. Even if the training samples contain incomplete/noisy ground truth

labels, FastTag is able to effectively and efficiently predict the complete list of labels.

• Multi-Label with a Mixed Graph (ML-PGD) [19] designs a mixed graph which fully ex-

plores the label dependencies. It considers the co-occurrence across each pair of the candidate

labels and the instance-level similarities as the graph edges.

• Semantic AutoEncoder (SAE) [77] proposes an effective and efficient autoencoder strat-

egy. It recovers multiple labels without other sophisticated constraints. SAE achieves high

performance in both conventional and zero-shot learning settings.

• Adaptive Graph Guided Embedding (AG2E) [71] proposes a novel approach which simul-

taneously updates the affinity graph, recovers labels, and optimizes projected subspaces. It

effectively overcomes the label noise and long-tail distribution issues.

We deploy the metrics utilized in [91]. Specifically, the recall R and the precision (Prec)

P are obtained. P =
tp

tp+fp
and R =

tp
tp+fn

, where tp denotes True-Positive. fn and fp represent the

False-Negative and the False-Positive respectively. We calculate harmonic mean of the precision and

the recall, F1-score (F1), to compare the results easier. F1 = 2P×RP+R . A non-zero recall (N-R) which

denotes the number of non-zero labels are further reported. Moreover, the mean average precision

(mAP) utilized in [19] is further deployed for a comprehensive evaluation. For all evaluations, higher

value denotes better performance.

2.3.2 Performance Comparison

Table 2.3 shows the classification evaluations. The result illustrates the higher performance

is obtained by our approach than other methods in most of the metrics. In addition, we can see

that the deviations of all the evaluated methods are relatively low. Although the deviations of our

approach are not the smallest, it is small enough to demonstrate the significance and stability of our

method.
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Table 2.4: Zero-shot multi-label learning performance

Dataset Method Prec Recall F1 N-R mAP

SUN

Regression 0.4301±0.0083 0.1243±0.0018 0.1929±0.0023 62.0±0.0000 0.4142±0.0035
SSMLDR 0.2611±0.0029 0.1055±0.0018 0.1503±0.0061 48.2±2.2893 0.3516±0.0046
FastTag 0.3924±0.0316 0.1317±0.0042 0.1972±0.0152 60.6±3.1825 0.3775±0.0227

ML-PGD 0.2972±0.0198 0.1138±0.0013 0.1646±0.0020 34.6±2.5273 0.5181±0.0025
SAE 0.4838±0.0128 0.1210±0.0007 0.1943±0.0015 55.8±0.6285 0.5357±0.0021

AG2E 0.4925±0.0059 0.1235±0.0028 0.1975±0.0041 55.2±0.1685 0.5132±0.0017
Ours 0.4710±0.0162 0.1326±0.0017 0.2069±0.0020 57.8±2.2114 0.4739±0.0031

CUB

Regression 0.2026±0.0091 0.0268±0.0009 0.0474±0.0018 143.6±1.9128 0.1982±0.0044
SSMLDR 0.1949±0.0042 0.0360±0.0004 0.0607±0.0008 131.4±3.1010 0.2535±0.0038
FastTag 0.2821±0.0286 0.0428±0.0033 0.0743±0.0074 143.0±3.6278 0.2229±0.0266

ML-PGD 0.1953±0.0081 0.0357±0.0002 0.0604±0.0006 81.8±2.4681 0.3095±0.0061
SAE 0.2206±0.0083 0.0355±0.0009 0.0611±0.0019 138.4±5.1826 0.3064±0.0035

AG2E 0.2749±0.0086 0.0415±0.0011 0.0720±0.0017 172.0±2.1983 0.3115±0.0036
Ours 0.2838±0.0062 0.0446±0.0009 0.0768±0.0011 172.2±1.8315 0.3004±0.0050

AWA

Regression 0.7761±0.0151 0.0761±0.0004 0.1386±0.0007 68.4±1.0425 0.8818±0.0012
SSMLDR 0.7380±0.0121 0.0787±0.0003 0.1423±0.0004 67.6±1.2185 0.8423±0.0082
FastTag 0.7753±0.0451 0.0852±0.0052 0.1535±0.0165 65.8±3.8195 0.8838±0.0267

ML-PGD 0.4570±0.0026 0.0607±0.0002 0.1073±0.0005 39.8±2.1066 0.8431±0.0004
SAE 0.8914±0.0016 0.0920±0.0007 0.1648±0.0011 71.6±1.1528 0.8432±0.0004

AG2E 0.8810±0.0132 0.0897±0.0018 0.1511±0.0035 71.8±1.1225 0.8381±0.0093
Ours 0.9129±0.0129 0.0906±0.0028 0.1657±0.0052 84.0±0.6385 0.8493±0.0085

We observe that the mAP performance is not competitive in the AWA dataset. We conjec-

ture several reasons. First, in the AWA dataset, the samples which belong to the same class have

consistent label vectors. Consider there are only 50 different label vectors corresponding to the 50

classes. The label distribution/diversity is narrow and this situation is unique in the AWA dataset.

We assume it is hard for our approach to learn comprehensive distribution knowledge and augment

diverse features. Second, the AWA dataset contains 24295 samples with averagely 15 labels in each

sample. The dataset scale is bigger than other datasets. We conjecture that the data scale is already

big enough for training a good classifier, and our model gains limited benefits from the feature

augmentation strategy. Meanwhile, our model still gets the best performance in mAP metric which is

considered as one of the most important metrics (i.e., F1 and mAP) for multi-label learning scenario.

For the SUN dataset, we observed that the precision and mAP are not the highest performance. We

assume that although the feature augmentation strategy is effective for improving the performance,

the precision-recall improvement balances of different datasets are uncertain. We observe that in

most of the cases either precision or recall is higher than other state-of-the-art methods. F1 metric is
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Figure 2.4: Multi-label annotation performance based on part of the available training samples. It
denotes that our approach still achieves high performance when fewer and fewer labeled samples are
provided in the training stage. It demonstrates the effectiveness and stability of the trained model.

Table 2.5: Ablation Study of Marginalized Augmentation Strategy

Dataset Aug. Prec Recall F1 N-R mAP

EMO
× 0.4215±0.0071 0.8357±0.0294 0.5611±0.0152 5.0±0.0000 0.5832±0.0187
√

0.4474±0.0080 0.8361±0.0230 0.5829±0.0118 6.0±0.0000 0.5962±0.0201

BIRD
× 0.1051±0.0189 0.5113±0.0201 0.1735±0.0113 17.0±0.0000 0.3391±0.0253
√

0.1065±0.0131 0.5216±0.0181 0.1780±0.0143 18.0±0.0000 0.3519±0.0311

SUN
× 0.6953±0.0096 0.1914±0.0024 0.3011±0.0031 100.0±0.0000 0.6785±0.0030
√

0.7046±0.0144 0.2040±0.0015 0.3164±0.0018 102.0±0.0000 0.6821±0.0028

a comprehensive evaluation which considers both precision and recall, and our method obtains the

highest performance in most of the target datasets.

2.3.3 Zero-shot Multi-label Classification

More challenging zero-shot scenario is deployed for evaluating our approach. In zero-shot

setting, the classes in the training set and the test set have no overlap, which means the feature

distribution gaps between training and test sets are more significant. Specifically, in multi-label

scenario, all the samples share the same set of multi-label candidates, while the training and test

samples are extracted from non-overlapped categories (e.g., horse and zebra could be in training and

test sets respectively. They share similar shape labels but different color/texture labels). SUN, CUB

and AWA datasets have the default splits for zero-shot scenario. Specifically, in the SUN dataset, it

contains 645 training classes and 72 test classes. In CUB dataset, 150 bird categories are used for

training and the rest 50 categories are used for testing. Moreover, AWA dataset consists 40 training

classes and 10 test classes. The detailed sample numbers are further summarized in Table 2.2.
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Figure 2.5: Learning performance based on different values of the Gaussian distribution variance δ
for feature augmentation. Different colors indicate the five metrics respectively. The result shows
that almost all the metrics improve as δ increases. It demonstrates the effectiveness of MCF module.

The same evaluation metrics as a general multi-label task are deployed and the results are

illustrated in Table 2.4. We can observe that our approach achieves higher performance compared with

other baselines. The result illustrates the ability of our approach for handling domain shift scenario,

where labeled and unlabeled samples are shifted. The standard deviations are still small while slightly

higher than conventional multi-label setting. We assume it is due to the larger distribution gap across

training and test data in zero-shot scenario.

2.3.4 Model Robustness Analysis

To estimate the robustness of our model, we use only partial samples from the labeled set

(from 10% to 100%) and the final results are shown in Figure 2.4. From Figure 2.4, we observe

that our approach is still able to secure the high performance even only 20% labeled samples are

provided, and it achieves the highest performances in most of the metrics when the ratio is from 20%

to 100%. The results prove the robustness of our model with limited samples.

2.3.5 Marginalized Feature Augmentation

To demonstrate the effectiveness of the marginalized augmentation strategy, we evaluated

the performance with and without augmentation module. As we discussed in section 2.2.4, our model

can degrade to a non-augmentation version when the variation of the augmented feature distribution,

δ, is reduced to zero. To this end, we tested the performance with and without it by tuning δ = 0, and

the result is shown in Table 2.5. Moreover, we gradually increase δ value and report the performance.
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The results in the BIRD dataset are illustrated in Figure 2.5. From the results, we observe that as δ

increases, almost all the metrics have some improvements. This result demonstrates the effectiveness

of the marginalized augmentation for improving the performance. In the experiments, we notice that

the same type of feature achieves the highest performance based on the same δ, and different features

require different δ. We utilize cross-validation to tune δ and report the performances. In addition, we

observe that the performances of different values of δ are relatively independent to other variables

(i.e., µ and λ). Therefore, we tune δ after other parameters are tuned. It is a more practical strategy

in real-world applications.
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Figure 2.6: Parameter sensitivity analysis of µ and λ. The much “redder” of the color indicates the
higher of the performance, and vice versa. From the results we observe that there are a wide range of
values which could make our model achieve the best performance. It proves the effectiveness and
robustness of our model. In real applications, cross-validation can be utilized for parameter tuning.
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Figure 2.7: Parameter sensitivity analysis of the graph nearest neighbor K in S optimization
procedure. It shows that instead of optimizing S for all sample pairs, calculating several nearest
sample pairs could achieve the similar performance. It indicates the robustness of adaptive graph and
we can further reduce the computational complexity in training phase by reducing the value of K.

2.3.6 Parameter Sensitivity

We further visualize the performance based on different values of µ and λ to analyze the

parameter sensitivity. The result is shown in Figure 2.6. The color scale bar from blue to red indicates
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convergence of the optimization procedure.

the performance from low to high. From Figure 2.6, we can obtain two conclusions. First, both µ and

λ could affect the performance. Second, there is a large region (i.e., red region) in the visualization

result where µ and λ are roughly equal to each other. This configuration usually leads to the best

performance. In our parameter tuning process, we usually set one parameter fixed (e.g., µ = 1) and

utilize cross-validation strategy to tune the value of λ. Based on our observation, this strategy could

achieve the best performance for all the datasets.

There is another hyper-parameter K in the our model, which denotes the number of the

nearest sample points in the feature space. We observe that most low-similarity pairwise samples

have the similarity value close to zero and they have almost no influence to the final obtained S.

In our implementation, we update S based on the nearest K pairwise samples. To prove this, we

evaluate the performance with different K = [0, 200] in Figure 2.7. It shows that the performance

drops considerably when only a few (i.e., 0, 1, or 2) of the nearest neighbors are utilized for updating

the adaptive graph. Meanwhile, K > 200 seems to have no distinctive negative influence to most

of the datasets. We observed that most of the elements in S are very close to 0, which means S

is usually sparse after the optimization procedure. Thus, K does not have any negative influence

on the final performance if K is great enough. From the result, we conclude that K ≥ 30 is an

appropriate value for most cases, and we do not need further parameter tuning for K, which reduces

the unnecessary calculation on updating S without loss the performance for the final prediction.
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Figure 2.9: Time consumption of all methods in the testing stage. It illustrates that our approach is
one of the most efficient methods which is suitable for large-scale applications.

2.3.7 Convergence Analysis

In the training stage, we utilize the Alternating Direction Method of Multipliers (ADMM) [78]

algorithm for solving the objective function. Specifically, the three target variables are alternatively

optimized to its optimal point until the final objective loss is converged (i.e., Eq. 2.11). Considering

multiple variables are optimized independently in the training stage, thus, it is difficult to theoretically

guarantee the obtained solution is the global optimal point. In practice, we empirically analyzed the

global convergence of our approach. The objective function value of Eq. (2.11) is shown in Figure 2.8

as the ADMM iteration increases, and different colors denote all five datasets. From Figure 2.8, we

observe that the objective function values significantly decrease in the first 10 iterations and become

stable afterward. The result empirically indicates that our optimization strategy is effective and could

converge in most real-world datasets.

2.3.8 Time Consumption

The time consumption of each method is illustrated in Figure 2.9. We can see from the

results that our model associated with SAE [77] and regression approaches are the most efficient

approaches. The main explanation is that although in the training stage, our approach requires to

alternatively optimize all the variables including P , S, and F . While, after the training procedure

is finished, our approach could directly utilize the learned projection P to project new/unseen

samples between visual and semantic/label spaces (i.e., Eq. (2.2)). By this way, the inferring process

could be degraded to a matrix multiplication operation without any extra computational costing

calculations (e.g., eigen-decomposition). The complexity is O(n) where n is the input sample
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numbers. Our previous work, AG2E [71], requires to update the entire adaptive graph based on

labeled and unlabeled samples, which is both space and computational costly.
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Figure 2.10: Case study of the label prediction results from the SUN dataset. Black font means
correct prediction and red font means incorrect prediction. In addition, blue font indicates the
“correct” prediction based on our judgments while are missing in ground truth.
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Figure 2.11: Zero-shot image retrieval result from SUN dataset. Given a target retrieval label, the
samples in the testing set which have the highest prediction score are selected. Green and red boxes
are the correct and incorrect retrievals. The numbers in right indicate the rankings of the samples.

2.3.9 Image Annotation

Image annotation setting is evaluated in the SUN dataset. Figure 2.10 listed the sample

images as well as the corresponding predicted labels. Different colors indicate different prediction

results. Considering some samples have a large number of labels, we only list the top 15 labels for

discussion. In Figure 2.10, the red font is the incorrect prediction and the black font is the correct

prediction. Blue font indicates the “correct” prediction based on our judgments while missing in

ground truth. Figure 2.10 illustrates that most of the prediction results are correct and our model is
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able to reveal several “missing” labels. From Figure 2.10, we observed that most of the predictions

are correct, and our model could further explore extra missing labels compared with ground truth.

The result demonstrates the efficiency and effectiveness of our method.

2.3.10 Image Retrieval

Image retrieval aims to retrieve specific images from a set of images [92]. This is deployed

in a wide range of real-world applications such as searching, recommendation, and captioning. In

our implementation, the obtained P assigns labels to the candidate images. The candidate images

are ranked based on the prediction confidence. Zero-shot setting is utilized which means the target

image categories are unseen in the training stage. The retrieved samples are listed in Figure 2.11.

Each row shows the retrieval label and the obtained images. The images with green and red boxes

are the corrected and incorrect retrieval. We observe that our model effectively retrieves the target

images even based on the target label even if the image categories are unseen in the training stage.

2.4 Deep Learning-based Multi-label Learning

2.4.1 Motivation

As deep learning-based approaches achieved significant improvement in machine learning

tasks, it is rational to explore the deep neural networks for solving the challenges in multi-label

learning scenario. However, compared with conventional machine learning approaches, deep learning

requires large-scale training samples to well train the neural network, and this drawback is more

significant for multi-label setting due to the long-tail label distribution and the high-level label noise.

Supervised approaches need a large amount of labeled training samples to reach high per-

formance. Compared with the single-label scenario, the multi-label scenario is more challenging [14].

For instance, if there is a large number of label candidates, the task would become difficult since the

number of possible label sets will become tremendous. And the combinations across various labels.

MEFF [93] utilizes a multi-view fusion approach for multi-label classification. Modulation approach

is proposed in [94] for encouraging the coupling of relevant tasks for image retrieval. However, the

scales of multi-label datasets [95, 96, 16, 15] are always limited which reduces the potential of the

approaches. Semi-supervised learning [97, 60] is able to explore a more compatible model by making

use of a small scale labeled dataset as well as a large scale unlabeled data [20, 98]. However, the

performances of these kinds of approaches significantly rely on the quality of the auxiliary data and
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the optimization process is complicated which is hard to control [99, 100]. Moreover, in multi-label

scenario, label correlation is crucial and important to further improve the learning performance.

[19, 101, 102] builds a semantic label hierarchy as prior knowledge to generate a label dependency

graph. [18] utilizes a label semantic structure to deduce label noise and cover diverse and distinct

labels. Label embedding [103] projects labels into a latent space to explore the label relations. [104]

uses attention and RNN based approach to obtain the object relations in an image space. However,

these approaches require the pre-defined label correlation information which is expensive and difficult

to obtain.

Generative Adversarial Networks (GAN) [105] explores the feature distribution from

real samples and generates diverse samples as real as possible. Specifically, GAN model contains

two neural network structures: First, a generator network is trained to generate fake samples

and confuse a discriminator network. Second, the discriminator tries to differentiate the real and

generated samples. The generator and the discriminator which are trained in opposition to one

another. The competition between the two networks lets both of them enhance their abilities

until the fake samples are indistinguishable. Many variations of GAN are proposed for various

goals and applications. Least Squares Generative Network [106] adopts the least squares loss

objective for the discriminator. It overcomes the vanishing gradient challenges during the training

process. Mode Regularized GAN [107] introduces several ways of regularizing the objective

function, which can dramatically stabilize the training of GAN models. Cycle GAN [108] proposes a

structure which translates and utilizes the absence of paired examples for source and target domain

translations. GMVAR [55] generates samples of different views for multi-view classification task.

Conditional GAN (CGAN) [109, 110] extends GAN strategy by adding conditional knowledge, such

as classification labels, on both the discriminator and generator. ACGAN [111, 112] is proposed

based on CGAN but is specifically associated with an auxiliary classifier, which is utilized to guide

and stabilize the training process for the generator. However, CGAN and ACGAN were mainly

designed to subjectively diversify images and utilize the human perceptual model MS-SSIM [113] to

evaluate the generation diversity. It is not designed for objective classification purposes. Conditional

Loss-Sensitive GAN [114] designs a loss function to make the fake images more real and can also

classify target images. However, it is designed for single label classification and is difficult to extend

to the multi-label scenario since it utilizes optimization strategy to classify.

In this thesis, we explore the idea of the Generative Adversarial Network (GAN) [105] and

propose a novel Generative Correlation Discovery Network (GCDN) for multi-label learning. The

framework of GCDN is shown in Figure 2.12. GCDN belongs to a supervised learning scenario. It
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automatically learns the feature distribution from the training data and even the visual components

across different samples. Our approach is able to span the feature area and overcome the limited

training data scenario. In addition, inspired by the use of graph strategy in deep model [115], such

as Graph-based CNN [116]; in our work, we design a simple but effective Correlation Discovery

Network (CDN) to learn the correlation among different labels. Different from previous works, our

approach is proposed to explore the generative model in the multi-label learning scenario. Specifically,

our model applies to multi-label classification rather than single-label classification. The model builds

connections across labels and features, and is designed to increase the visual feature diversity for

boosting learning performance rather than increasing diversity for the subjective human perceptual

evaluation [113].

In summary, GCDN captures the feature distribution of each label, and generates fake

features, which completes the distribution to obtain more general samples. Meanwhile, GCDN

learns the correlations across different labels and takes advantage of the learned semantic structure

knowledge to significantly improve the learning performance. Our main contributions are listed as

follows:

• A specifically-designed multi-label conditional feature generative strategy is proposed. It syn-

thesizes and diversifies the feature space to improve the model robustness and generalization.

• A graph-based Correlation Discovery Network (CDN) is proposed to automatically learn

semantic correlations across different labels and utilize the knowledge to further improve

learning performance.

• A similarity constraint is deployed associated with the multi-label prediction to stabilize the

generator training, which is effective in multi-label learning scenario.

All designed networks are trained simultaneously in an end-to-end scenario without other

semantic information as prior knowledge, which is easy to deploy to a wide range of potential

multi-label learning and relevant applications.

2.4.2 Preliminaries

Given the multi-label training data {Xl, Yl}, Xl ∈ Rd×nl is the feature matrix, where each

column xi ∈ Rd represents one instance, nl is the instance number, and d is the feature dimension.

Yl ∈ Rdl×nl is the label matrix, where dl is the dimension of the label. Each column yi denotes

the corresponding multi-label vector of xi. Generally, our approach aims to train based on {Xl, Yl}
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Figure 2.12: Framework of our approach, where a generator G(·), a discriminator D(·), and a
multi-label classifier CM (·) are simultaneously trained. The generator synthesizes augmented
samples conditioned on the provided labels to handle the limited data and long-tail label distribution
drawbacks; while the classifier predicts initial multi-label results, and the results are transferred to
the correlation discovery network to learn correlations and obtain final high accuracy results. All
networks are jointly trained in an end-to-end scenario to achieve the highest performance.

without any other prior knowledge, and predict the multi-label Yu of Xu. Since the feature space is

much more diverse than the label space, thus, it is challenging to collect enough labeled visual data

to capture the data variance. Moreover, there are sophisticated correlations residing across different

labels. It is useful and crucial information to further improve the learning performance, but it is

difficult and expensive to obtain.

To this end, we aim to compensate for the visual feature and mitigate the gap between the

training and testing samples. Inspired by the idea of generative model, it is natural to synthesize more

diverse features conditioned on each multi-label vector. Meanwhile, a simple but effective graph

structure is proposed to automatically explore the label correlation knowledge to further improve

the learning performance. These two parts are crucial to improve the learning performance, since it

allows the model to fully utilize the feature-label mapping and label-label correlation knowledge

from both the feature space and label space of the training samples.

2.4.3 Multi-label Generation

Figure 2.12 illustrates the structure of our approach. It contains a generator G(·), a

discriminator D(·), a multi-label classifier CM (·), and a correlation discovery network CCDN (·).

Xg = G(z|Y ), where Y is the label matrix for conditionally generating samples and z is the random

noise. The D(·) outputs the probability of the samples being real or fake. The generator captures the

feature distribution of the existing data and borrows the shared components from other categories.
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CCDN (·) further learns the label correlation and helps to improve the final label prediction. The

objective function of D(·) is shown in Eq. (3.4) which manages to maximize LD:

LD = EX∼pX(X) logD(X|Y ) + Ez∼pz(z) log(1−D(G(z|Y ))), (2.22)

where D(·) is a three-layer network including a fully connected layer with ReLU activation, a mini-

batch [117] layer with the LeakyReLU [118] activation, and a fully-connected layer with Sigmoid

function. Multi-label classifier CM (·) includes two objectives. The first one is trained based on real

samples, while the second one is based on the generated samples associated with the conditional

labels to improve the robustness and generalization of the classifier. The objective function is shown

as follow:

LCM
= µ‖Y − CM (X)‖2F + (1− µ)‖Y − CM (G(z|Y ))‖2F, (2.23)

where µ is the trade-off parameter which is used to balance the weights between real and fake

samples. µ is empirically set to 0.5 in our implementation, which expects both the real and fake

samples are evenly utilized for training. And it also avoids extra parameter tuning. Meanwhile,

we have observed that slightly tuning µ near 0.5 does increase the performance a little, and cross

validation could be employed for automatic parameter tuning. CM (·) is a two-layer network with

ReLU activation in the hidden layer and a Sigmoid in the output layer. We observe that two layers are

enough for label prediction, and the model is not sensitive to the number of layers. For discriminator,

we include more constraints. The first term is the major competing component with D(·) and makes

the generated samples as real as possible:

LGd = −Ez∼pz(z) log(1−D(G(z|Y ))). (2.24)

Compared with single label learning, multi-label learning provides more abstract infor-

mation for each sample. Inspired by ACGAN [111], we further utilize the classification results as

another clue to stabilize the generator training:

LGc = ‖Y − CM (G(z|Y ))‖2F. (2.25)

Moreover, considering the various feature distributions across labels, the proposed terms

may not be strong enough to achieve stable and robust generation performance. Thus, we further

include similarity constraint which pulls the generated samples and real samples to be similar:

LGs = ‖G(z|Y )−X‖2F. (2.26)
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After combining all the objectives together and the generator loss is shown as follow:

LG = LGd + αLGc + λLGs, (2.27)

where α and λ are the trade-off parameters which balance the scales across binary discriminator

loss, multi-label space, and visual feature space. The major goal of LGs is to stabilize the training

process, and we could tune λ to balance the strength of LGs . We did observe that large λ decreased

the final performance, while a small-scale λ on LGs indeed reduced training fluctuation and sped up

the training process. G(·) is a two-layer neural network in addition with a batch-normalization layer

[119] to normalize input vectors and improve model robustness.

2.4.4 Correlation Discovery Network

Simply deploying GAN model is not enough to achieve the highest performance. As

introduced before, label correlation is crucial to further improve learning performance. Thus, we

propose a simple while effective Correlation Discovery Network (CDN), CCDN (·), to automatically

explore the label correlation knowledge. After the predicted label fci = CM (xi) is obtained, where

fci ∈ Rdl×1 is the prediction of each instance xi. We make a transformation from fci to an adjacency

matrix mci by multiplying fci and its transposition as mci = fci × f>ci , where mci ∈ Rdl×dl is the

adjacency matrix and dl is the label dimension. The obtained mci is reshaped to a Rd2l×1 vector and

forwarded to a fully connected layer network and further predicts the multi-label result. To this end,

the objective of CDN is shown below:

LCCDN
=

nl∑
i=1

‖yi − CCDN (CM (xi)CM (xi)
>)‖22, (2.28)

where yi ∈ Rdl×1 is the corresponding multi-label vector of xi. In this network, the elements in

mci are the multiplication of each pair of the predicted labels of fci, which could be considered as a

similarity metric of the pairwise labels (including the similarity with itself). CDN is trained based

on the similarities structure. By this way, CDN explores the latent correlation knowledge residing

inside the training data based on the obtained similarities, and further refines the predicted label from

CM (.) to improve performance.

In summary,CM (·) obtains initial (low-accurate) results first, thenCCDN (·) further utilizes

the available prediction to “tune” the result to high-accurate. Specifically, CCDN (.) can be considered

as a refining strategy over CM (.). It explores the latent structure knowledge (correlation) across

labels and further improves the prediction performance. Jointly optimizing CM (.) and CCDN (.) by
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combining their losses together could 1) control the training of CM (.) to predict rough labels and 2)

intentionally force CCDN (.) to capture the label correlations based on the rough labels from CM (.).

This strategy balances the update processing between CM (.) and CCDN to further help each other in

the training stage and achieve the promising performance at last. To this end, the objective function

is shown as below:

LC = γLCM
+ (1− γ)LCCDN

, (2.29)

where γ ∈ [0, 1] is the trade-off parameter which is used to balance the weights of the two objective

terms. We empirically set γ = 0.5 for the experiments, and its parameter sensitivity will be analyzed

in the following sections.

In our implementation, CCDN (·) is a fully-connected two-layer network with ReLU

activation in the first layer and Sigmoid activation before output. Considering mci is a symmetric

matrix, thus, to reduce the redundant weights, we remove almost half of the mci and forward to

CCDN (·). This strategy improves model efficiency without losing any information, and the input

dimension of CCDN (·) becomes (d2l + dl)/2.

2.4.5 Model Discussion

Our proposed model contains three networks jointly optimized in a minimax strategy,

which brings in several advantages. First, it is an end-to-end framework without the requirement of

any other prior knowledge (e.g., semantic label hierarchy), which is easy to train and compatible

for a wide-range of applications; second, the learning performance is robust. Since the generated

data enlarges and diversifies the feature distribution, which effectively reduces the over-fitting issue;

third, other than the discriminator, the classifier as well as the similarity constraint further guide

the generator optimization process and make the training process be efficient and stable; fourth,

the GCDN can be directly deployed for testing without any other optimization operations which

is more simple and efficient in inference compared with graph-based approaches. To this end, our

model jointly trains the components and enables each component to benefit others. The experiments

demonstrate its necessity in multi-label scenario.

Compared with the conventional generative model, our approach is different in the fol-

lowing aspects. First, our model conditions multi-label information (either binary or continuous

values) to synthesize the visual features which is more challenging than the single-label generation

scenario. Second, the label correlation knowledge is automatically learned in the training procedure

without any extra semantic knowledge, which is more compatible in a wide range of real-world
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applications. Third, our model generates samples in feature space instead of image space, thus, it is

not only limited for image level application, but also potentially works well with other data types

(which is demonstrated in experiments).

2.5 Experiment

We evaluate our approach associated with the state-of-the-art approaches on six fine-grained

datasets. We further extend the experiments to zero-shot multi-label learning, image annotation, as

well as image retrieval scenarios in the experiments.

2.5.1 Multi-label Datasets

Six image datasets collected from different data formats are utilized for evaluation. Brief

introductions of the datasets are as follows:

• Corel5K Dataset [95] is a subset from the Corel Photo CD dataset. It contains 4, 500 images

assigned for training and 499 images assigned for testing. Each label is a 260-dimensional

semantic description vector in binary format. The average descriptions per sample is 3.40.

• ESP Game Dataset [96] is labeled by an ESP interactive system, which is designed like a

computer game in the labeling process. It includes 18, 689 samples assigned for training and

2, 081 samples assigned for testing. The label vector is a 268-dimensional vector in binary

value. On average, each sample is assigned with 4.69 labels.

• IAPRTC-12 Dataset [120] CLEF cross-language dataset which is generated for image re-

trieval task. It has 19, 627 samples including landscapes, animals, actions, etc. 17, 665 samples

are assigned for training and 1, 962 samples are assigned for testing. The label vector is

291-dimension in binary format with averagely 5.72 labels.

• SUN Dataset [15] is a scene multi-label database including images such as bakery, ballroom,

and balcony. There are 717 scene classes in total. Each instance contains a 102-dimensional

label vector in a continuous value format, ranged between [0, 1] assigned by multiple trained

labors, with averagely 6.31 labels per sample. There are 12, 900 samples for training and

1, 440 samples for testing.
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Table 2.6: multi-label learning performance

Data Method Pre Rec F1 N-R mAP Data Method Pre Rec F1 N-R mAP

Corel

LR 0.2859 0.3211 0.3025 128 0.3630

SUN

LR 0.6209 0.1473 0.2457 102 0.6807
SSMLDR 0.2741 0.3366 0.3022 143 0.3410 SSMLDR 0.6879 0.1700 0.2726 102 0.6723
FastTag 0.3123 0.3657 0.3369 143 0.3871 FastTag 0.6816 0.1473 0.2457 102 0.6914

ML-PGD 0.2575 0.2911 0.2732 122 0.3727 ML-PGD 0.7110 0.1614 0.2631 101 0.7087
SAE 0.2962 0.3442 0.3184 141 0.3823 SAE 0.7183 0.1638 0.2668 98 0.7012

AG2E 0.3011 0.3520 0.3245 157 0.3568 AG2E 0.7685 0.1765 0.2871 99 0.6778
Ours 0.3335 0.3714 0.3514 148 0.4417 Ours 0.7985 0.1835 0.2985 102 0.7093

ESP

LR 0.3793 0.2038 0.2653 215 0.3440

CUB

LR 0.2010 0.0239 0.0428 157 0.0638
SSMLDR 0.3298 0.1885 0.2399 226 0.3156 SSMLDR 0.3410 0.0473 0.0832 178 0.2329
FastTag 0.4011 0.1927 0.2617 208 0.3904 FastTag 0.2147 0.0359 0.0615 167 0.3144

ML-PGD 0.3239 0.2012 0.2482 210 0.4077 ML-PGD 0.3334 0.0451 0.0794 155 0.3288
SAE 0.3861 0.1743 0.2402 194 0.3842 SAE 0.3383 0.0514 0.0908 196 0.3255

AG2E 0.3548 0.1525 0.2133 213 0.3730 AG2E 0.3409 0.0531 0.0911 190 0.3106
Ours 0.4032 0.2178 0.2828 239 0.4327 Ours 0.3718 0.0541 0.0944 214 0.3561

IAP

LR 0.4287 0.2041 0.2765 199 0.4211

AWA

LR 0.8798 0.0821 0.1500 75 0.8626
SSMLDR 0.3491 0.2520 0.2927 229 0.3981 SSMLDR 0.7812 0.0858 0.1546 67 0.8346
FastTag 0.4346 0.2267 0.2980 227 0.4596 FastTag 0.7861 0.0949 0.1694 72 0.8791

ML-PGD 0.4132 0.2441 0.3011 230 0.4674 ML-PGD 0.5395 0.0635 0.1136 57 0.9121
SAE 0.3537 0.2282 0.2774 213 0.4309 SAE 0.9683 0.0957 0.1742 73 0.9397

AG2E 0.3829 0.2330 0.2897 229 0.4353 AG2E 0.8483 0.0827 0.1507 73 0.9033
Ours 0.4732 0.2648 0.3396 237 0.5295 Ours 0.9716 0.0871 0.1599 83 0.9291

• CUB Dataset [16] has 200 birds. Each instance has roughly 31.39 annotations in a binary

312-dimensional label vector. There are several options to split the images for training and

testing with roughly 8, 800 samples for training and 1, 440 samples for evaluation.

• AWA Dataset [82] consists of more than 30, 000 images captured from 50 animal species.

The label vector is a 85-dimensional vector and each instance has roughly 15 labels. Different

from other datasets, the label vectors are continuous values that range from 0 to 100. There

are 24, 295 samples for training and 6, 180 samples for testing.

2.5.2 Experimental Setup

In our implementation, all three networks are fully connected networks. Other sophisticated

deep networks can also be applied to attain higher performance. For ESP Game, IAPRTC, and

Corel5K datasets, we utilize 15 different visual descriptors, which are extracted by [91]. For AWA,

CUB, and SUN dataset, due to the limited training data which is difficult obtain a well trained

convolutional neural network from scratch; hence, the pre-trained VGG Networks [86] based on

ImageNet [87] is deployed to extract deep visual features. As shown in Figure 2.12, the label vector

concatenated with random noise is set as input to G(·). α is empirically set to 0.01. λ limits the
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feature scales which is set to 5 for VGG [86] features and 20 for handcrafted features [91]. ADAM

optimizer [121] is employed and the learning rates are set to 0.00002, 0.00002, 0.00005, and 0.001

for CM (·) and CCDN (·), D(·), and G(·), respectively. In the training procedure, CM (·) and G(·)
are pre-trained to have stable initialization, while G(·) is optimized by LG = LGc + λ

αLGs without

including LGd at first, and after around 50 epoch, we switch LG back to Eq. (4.2) and train D(·)
simultaneously with the other networks. The same number of generated and real samples are utilized

in each training iteration. We randomly separate the samples into a training and a testing subset with

relatively even sample numbers and run our model 5 times and report the average performance. The

model is implemented on TensorFlow and trained with Nvidia Titan XP GPU for acceleration. The

regular training time is around 20 minutes for model convergence.

2.5.3 Multi-label Classification

For the multi-label classification scenario, we evaluate our approach on two settings: (a)

Conventional multi-label learning; (b) Zero-shot multi-label learning which is a more challenging

task. We compare our approach with several state-of-the-art representative multi-label learning

approaches. Brief introductions of the methods are listed below:

• Least Square Regression (LR) is a straightforward linear regression model, which learns a

linear mapping between the feature and label spaces.

• Semi-Supervised Multi-Label Dimension Reduction (SSMLDR) [76] effectively utilizes

the information from both labeled and unlabeled data by designing a special label propagation

strategy to improve the model’s robustness and accuracy.

• Fast Image Tagging (FastTag) [90] proposes two co-regularized linear mappings in one loss

function. It is able to infer the full list of tags based on the incomplete ground truth training

labels.

• Multi-Label learning using a Mixed Graph (ML-PGD) [19] proposes a label dependencies

model by constructing a mixed graph and combines instance level similarity with class co-

occurrence.

• Semantic AutoEncoder (SAE) [77] proposes an effective auto-encoder with an additional

reconstruction constraint to recover labels.
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Table 2.7: multi-label learning performance on augmented label sets

Data Methods Pre Rec F1 N-R mAP Data Methods Pre Rec F1 N-R mAP

Corel

LR 0.2842 0.2304 0.2545 103 0.3762

ESP

LR 0.3848 0.1256 0.1894 178 0.3913
SSMLDR 0.3036 0.2791 0.2908 134 0.3660 SSMLDR 0.3253 0.1697 0.2231 202 0.3357
FastTag 0.3329 0.3145 0.3234 136 0.4127 FastTag 0.3886 0.1531 0.2197 196 0.4254

ML-PGD 0.3245 0.3011 0.3124 140 0.4275 ML-PGD 0.3713 0.1184 0.1795 162 0.4211
SAE 0.3168 0.3037 0.3101 128 0.4192 SAE 0.3153 0.1425 0.1966 156 0.4050

AG2E 0.3273 0.3172 0.3221 143 0.3985 AG2E 0.3518 0.1492 0.2095 196 0.4030
Ours 0.3438 0.3219 0.3325 138 0.4773 Ours 0.4772 0.1944 0.2763 225 0.4436

• Adaptive Graph Guided Embedding (AG2E) [71] proposes an adaptive graph strategy

which jointly obtains the similarity graph and predicts multiple label in a semi-supervised

fashion.

For the SSMLDR method, we directly set testing data as unlabeled data and evaluate its

recovery performance. To fully compare our approach with other methods, we utilize the same metrics

adopted in [91]. When the labels are recovered, we select the top 5 ranked labels as the recovered

label. Then, the recovery precision (Pre) P and the recall (Rec) R are calculated. P =
tp

tp+fp
, and

R =
tp

tp+fn
, where tp represents truth-positive. fp and fn represent the false positive and the false

negative respectively. To compare the results easier, we calculate the F1-score (F1) which is the

harmonic mean of the precision and the recall, where F1 = 2P×RP+R . We further obtain the number of

labels with a non-zero recall (N-R) value. The mean average precision (mAP) from [19] is utilized

for comprehensive evaluation. In all metrics, higher value indicates better performance.

The experimental result in the conventional multi-label learning setting is illustrated in

Table 2.6. We can see that our approach significantly outperforms other baselines in most of the

metrics, which demonstrates the high accuracy and robustness of our approach. The work of [19]

proposes a complete/augmented label set for Corel5K and ESP Game datasets, increasing Corel5K

label from averagely 3.40 to 4.84 labels, and the ESP Game label from 4.69 to 7.27 labels. We

evaluate our model based on these label sets (2.7). The results are shown in Table 2.7, and it indicates

that our approach still achieves the best performance in most matrices.

2.5.4 Zero-shot Multi-label Classification

We extend our method to the zero-shot multi-label scenario where the classes in training

and test are non-overlapped. It is a more challenging task since the distribution gaps are more
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Table 2.8: Zero-shot multi-label learning performance

Data Method Pre Rec F1 N-R mAP

SUN

LR 0.7047 0.1548 0.2539 97 0.6616
SSMLDR 0.6637 0.1481 0.2422 95 0.6581
FastTag 0.6906 0.1522 0.2494 90 0.6706

ML-PGD 0.7037 0.1471 0.2433 95 0.6829
SAE 0.6978 0.1710 0.2747 100 0.6513

AG2E 0.7125 0.1618 0.2637 88 0.6693
Ours 0.7531 0.1857 0.2979 101 0.6911

CUB

LR 0.2600 0.0307 0.0549 160 0.2693
SSMLDR 0.2926 0.0383 0.0677 166 0.2329
FastTag 0.2231 0.0434 0.0726 143 0.2967

ML-PGD 0.2392 0.0365 0.0635 117 0.3178
SAE 0.2552 0.0469 0.0798 167 0.3102

AG2E 0.2808 0.0481 0.0821 163 0.2693
Ours 0.3091 0.0488 0.0843 179 0.3264

AWA

LR 0.7555 0.0766 0.1392 66 0.8809
SSMLDR 0.7017 0.0764 0.1378 66 0.7858
FastTag 0.8610 0.0912 0.1649 81 0.8918

ML-PGD 0.4338 0.0623 0.1091 49 0.8677
SAE 0.9015 0.0926 0.1679 78 0.8918

AG2E 0.8247 0.0811 0.1476 71 0.8874
Ours 0.9249 0.0804 0.1480 83 0.8784

significant.

We evaluate our model based on the SUN, CUB and AWA datasets. These datasets have

default training and testing splits for ZSL. In the SUN dataset, 645 classes are used for training and

72 classes are used for testing. In the AWA dataset, 40 classes of animals are assigned for training

and the other 10 are set for testing. In the CUB dataset, 150 classes are set for training and 50 are set

for testing. There are 4 different splits in CUB, thus, we execute the testing four times and report

the mean results. For SUN and AWA datasets, we run the testing five times and obtain the average

performance.

The performance is illustrated in Table 2.8, which indicates the high performance of our

approach compared with other baselines. It shows that our model is robust and works well even when

the testing classes are unobserved during the training stage. This advantage is suitable for real-world

applications since the target images are not controllable. On the AWA dataset, our model still cannot

achieve the best performance of all metrics. The reasons are similar to the explanation discussed in

the conventional multi-label scenario. Since the label distribution is narrow and the scale of training

samples is large, the performance of our model cannot achieve significant improvement.

Moreover, we visualize 10 unseen classes of CUB dataset from the predicted labels.
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Figure 2.13: Ablation study: classification performance along training iterations in the IAPRTC-
12 dataset. Different color indicates generative and CDN modules are removed/deployed in our
approach. The red line indicates the results of our complete approach; blue line is our model without
generative strategy; yellow line is our model without CDN; and green line is the result which both the
generative and CDN modules are removed. It illustrates that CDN dramatically improves the learning
performance in all metrics especially Recall, F1, and mAP metrics. Only CDN-based strategy causes
over-fitting easily due to the limited training data and long-tail feature distribution, while generative
model could effectively increase the robustness and stabilize the learning performance. The result
demonstrates the effectiveness of both generative and CDN modules in our approach. (Please view
the color figures for better visualization)
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Figure 2.14: Visualization of 10 hard unseen classes of both generated (hollow circle) and ground-
truth (solid circle) samples. The same color denotes the same class samples. It further demonstrates
the generated samples are similar but not same to ground-truth samples, and they do enlarge/diversify
the distribution area.
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Table 2.9: Multi-label learning performance based on different noise levels. Gaussian noise with
different variance is added on the original feature of the CUB samples.

Noise Pre Rec F-1 N-R mAP

0.00 0.3718 0.0541 0.0944 214 0.3561
0.05 0.3711 0.0540 0.0941 214 0.3561
0.10 0.3692 0.0538 0.0943 214 0.3537
0.15 0.3668 0.0537 0.0941 214 0.3511
0.20 0.3647 0.0534 0.0938 212 0.3482
0.25 0.3612 0.0533 0.0936 211 0.3467
0.30 0.3591 0.0531 0.0932 209 0.3416
0.35 0.3505 0.0530 0.0930 208 0.3389
0.40 0.3393 0.0529 0.0929 206 0.3351
0.45 0.3314 0.0528 0.0927 204 0.3232
0.50 0.3248 0.0526 0.0926 202 0.3215

Specifically, we deploy t-SNE [2] to map both the generated samples (hollow circle) and the ground

truth samples (solid circle) to a 2-D subspace in Figure 2.14. We can see that the samples belonging

to the same class become closer, while different classes samples are more separated. It indicates that

our model could improve discriminability and generalizability to predict multiple labels given an

unseen image.

2.5.5 Ablation Study

To demonstrate the effectiveness of all the proposed strategies in our approach, we inten-

tionally run our approach with or without the generative and CDN modules in IAPRTC-12 dataset.

Figure 2.13 illustrates the performance with the iteration increasing; different colors indicate different

settings. The details are introduced in the caption. We can see that our approach achieves the highest

performance when both generation and CDN modules are deployed. CDN improves the learning

performance significantly; however, only utilizing CDN without generative strategy could easily

cause over-fitting due to the long-tail label distribution, while generative strategy diversifies the

feature distribution and effectively reduces the over-fitting issue. From Figure 2.13, we observe

that only generative model without CDN could also improve the performance but the improvement

is not significant. To this end, we conclude that both GAN or CDN can effectively improve the

performance independently, and the combination of the two components can let GAN and CDN help

each other and dramatically improve and stabilize the performance.

To further demonstrate the effectiveness of the generative strategy, we add low-level

Gaussian noise on original features. Table 2.9 shows the classification performance based on various
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Figure 2.15: Samples of recovered labels from SUN dataset. Each image contains several semantic
labels. Black font denotes labels that match with the ground truth. Blue font denotes labels that do
not exist in the ground truth but match our judgments. Red font denotes incorrect labels from our
model. The result shows that our approach is robust and able to recover labels even when labels are
missed from the ground truth.

noise levels. It illustrates that the classifier obtains the highest performance if no noise is included in

the features. To this end, we conclude that noise cannot increase the sample diversity and it could

further destroy the feature structure and eliminate learning performance. This result indicates that the

generator is indeed an effective approach to synthesize appropriate features to diversify and enlarge

corresponding distributions in feature space.

In our model, γ ∈ [0, 1] is a critical hyper-parameter, as introduced in Eq. (2.29), which

balances the weights between CM (·) and CCDN (·). Now, we tune γ in [0, 1] on IAPRTC12 dataset

and Figure 2.16 shows the performance. We observe that our model achieves stable and highest

performance when γ ∈ [0.1, 0.9], which indicates the parameter insensitivity of our model. If γ is too

close to 0, that means there is no control on CM (.) and CM (·) could not to be trained to output initial

label prediction. By this way, the label relation matrix can only be considered as a regular feature

extraction layer but without any reasonable logic which may decrease the generalization quality and

cause the overfitting issue. Thus, we can see the clear performance decreases when γ is close to 0.

Meanwhile, if γ is too close to 1 would cause CCDN (·) not be trained which significantly reduces

the learning performance. These results demonstrate the necessity of jointly training CCDN (·) and

CM (·) in our model. In the implementation, we empirically set λ = 0.5 to achieve the results of

all datasets which denotes that 0.5 is appropriate enough for most applications without extra tuning
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Figure 2.16: Parameter sensitivity analysis: The performance of GCDN as γ changes from 0 to
1 in IAPRTC12 dataset. The result illustrates that evaluation metrics are high and stable when
γ ∈ [0.1, 0.9] which demonstrates the robustness and parameter insensitivity of our model.

procedure.

2.5.6 Discussion

We notice that our approach cannot achieve the best performance in AWA dataset in some

metrics. We consider this for the following reasons. First, different from other datasets, AWA samples

that belong to the same class share only one consistent semantic description (label vector), thus, it is

difficult to comprehensively learn neither image-label mappings nor cross-label correlations; second,

due to the consistent label issue, there are limited correlation information learnt by CDN to extend to

other samples/classes. The result reveals the limitation of the proposed model but this scenario is

unique which is not seen very often.

2.5.7 Image Annotation

We test the image annotation performance on the SUN dataset and the result samples are

shown in Figure 2.15. Figure 2.15 shows target images and the recovered labels are listed on the right.

We set different colors to indicate different labels. The black font denotes correct labels. Considering

there are more than 10 labels of an image in some cases, we only visualize and discuss the labels

with the top 10 highest scores. The blue font indicates the missing annotations in ground truth but our

model still promisingly recovers these labels based on our judgments. The red font denotes incorrect

recovered labels from our model. From the result, we can see that most recovered labels are correct

with several discovered “new” labels. The results indicate that our model is effective and robust,
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Figure 2.17: Image retrieval result of SUN dataset in zero-shot scenario. Each row shows the images
with the highest corresponding label score retrieved from the testing set. Green and red boxes indicate
correct and incorrect retrieval, respectively. For each target label, we show the first incorrect retrieval
result and its score ranking on the image right corner.

which is able to recover the vast majority of labels from target images in high accuracy. Moreover,

our model can find the missed and error labels of the ground truth.

2.5.8 Image Retrieval

We further test our approach in the image retrieval scenario. Image retrieval is a visual

search task that aims at retrieving target images from large-scale image sets. The target features can

be visual, semantic or content descriptions. Image retrieval has a lot of real-world applications such

as image search, person identification and data mining. In the implementation, the trained classifier

is used to predict labels of the testing images. Then we rank the images by each score of the label.

When inputting a retrieval label, we can find the corresponding images from the ranking results. We

run the test based on the same zero-shot settings, that means the retrieved classes don’t exist in the

training process. It is a more challenging task than the conventional setting. Figure 2.17 shows the

retrieved image samples. The left part lists the target label, and the right part shows the retrieved

images. Green and red image edges indicate correct and incorrect retrieval results respectively. Since

most top ranking images are correct, we intentionally select the first incorrect results of them and

mark the images associated with the corresponding ranking numbers on the bottom corner of each

image. From 2.17, we can see that most images are correctly retrieved with only a few errors.

There are discussions for some phenomena we find in the results. First, the performance

varies in different labels. For example, the retrieval performance of metal is better than digging.
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We observe that adjective and verb labels are more challenging than noun labels. Since it needs to

analyze interactions between different features and more sophisticated context based structures are

required for this challenge. Second, the model prefers specific scenes than others. Such as sports,

the model prefers to retrieve all field scenes first instead of specific sport classes such as biking and

swimming. Thus, more works can be done for these issues to get better retrieval performance.

2.6 Conclusion

In this Chapter, we introduced two multi-label learning frameworks. The first one is

the generic multi-label learning framework via Adaptive Graph and Marginalized Augmentations

(AGMA) in a semi-supervised learning scenario. It efficiently utilizes limited labeled samples

associated with unlabeled samples to improve learning performance. In AGMA model, an adaptive

similarity graph is learned to effectively obtain the intrinsic structure within the data; moreover, a

marginalized strategy is explored to further augment the samples to reinforce the generalization

and robustness of the learned model. An autoencoder is utilized to connect visual space and label

space. Extensive experiments prove the usefulness of all designed modules in our framework, and

demonstrate the high robustness, accuracy, and efficiency of our AMGA method. The second is

a Generative Correlation Discovery Network (GCDN) for Multi-label Learning. GCDN captures

the visual distribution and generates diverse samples to fill up gaps between training and testing

samples. A multi-label classifier is jointly trained based on both the generated and real samples to

improve the robustness and accuracy. A simple but effective Correlation Discovery Network (CDN)

is proposed to automatically explore the correlations across labels and dramatically improve the

learning performance without any extra semantic information as prior knowledge. All networks

are jointly trained in an end-to-end scenario. Our model is quantitatively and visually evaluated

based on six datasets with four settings and significantly improves the performance. Ablation study

demonstrates the necessities of all proposed strategies in our model for reaching high accuracy.
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Multi-view Learning

3.1 Background

Multi-view learning aims to integrate complementary information from different views to

improve the performances of down-stream tasks such as clustering, classification, and segmentation

[30, 31, 32, 33, 34]. The views refer to various feature representations, modalities or sensors. Multi-

view learning is a challenging task due to the distinct gap between heterogeneous feature domains.

Most existing methods focus on analyzing static multi-view data (e.g., image, description, and

attributes). In various multi-view learning tasks, multi-view action recognition [122, 123, 124, 125]

has become attractive and urgent as the increasing multi-modal sensors are widely deployed in a

great number of real-world applications. More specifically, RGB-D action recognition is one of

the most important and urgent research directions due to the popularity of depth/3D sensors and

the corresponding applications such as action recognition, emotion classification, skeleton/pose

estimation, and human-computer interaction [126, 127, 128].

There are two categories in the multi-view action recognition scenario. The first category

explores action sequences captured by multiple sensors which belong to the same visual modality

(e.g., surveillance systems usually capture videos with RGB-only cameras). These methods assume

that actions recorded by different viewpoints (e.g., front, back, and top) or distances could provide

distinctive aspects for recognition tasks [123, 124, 125]. The second category methods analyze

action sequences captured from different types of sensors (e.g., RGB, depth, skeleton, acceleration,

trajectory, 3D, and electromyography [4, 3, 1, 129]) and attempt to integrate the complementary

information among various modalities. For instance, Kinect sensor [126, 130] provides high-

quality RGB, depth, and skeleton sequences simultaneously, where both depth [131, 132] and
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Figure 3.1: Illustration of our GMVAR approach, which is trained on both RGB and depth views.
However, in the test stage, GMVAR is capable of dealing with different scenarios including complete
multi-view, partially missing view, or even single-view. It is due to the generative mechanism in our
model which significantly extends the potential applications of our approach.

skeleton [133, 134, 135] modalities have been demonstrated to provide effective and unique motion

knowledge for action recognition. Electromyography (EMG) signal which reflects the electrical

activity produced by skeletal muscles is utilized for action/motion analysis [136, 129]. Acoustical and

acceleration are also utilized for multi-view event detection and action recognition tasks [137, 138].

3.2 Generative Multi-View Human Action Recognition

In this part, we briefly present our motivation, then provide our Generative Multi-View

Human Action Recognition framework. Finally, we illustrate the experimental results and the ablation

studies to demonstrate the effectiveness of our approach.

3.2.1 Motivation

In this thesis, we focus on the second category of multi-view action recognition. As

shown in Figure 3.1, both RGB and depth views are available in the training stage while either

complete or incomplete/missing views are available in the test stage. Incomplete view is a more

challenging while practical scenario, which usually happens due to a lot of reasons such as sensor

malfunction, equipment deficiency, and signal loss in the data transformation process. Naively fusing

multi-view features (e.g., concatenation or summation) could induce a negative effect and hurt the
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Figure 3.2: Framework of our proposed model. The RGB and depth views first go through the
feature encoders E1(·) and E2(·) respectively to obtain more distinctive representations in the latent
subspaces Z1 and Z2. Two generators G1(·) and G2(·) generate representations conditionally based
on the other subspace. This generative mechanism fully explores the feature distribution acrossZ1 and
Z2. Two view-specific classifiers C1(·) and C2(·) are trained to obtain initial recognition prediction
from each view, then the proposed View Correlation Discovery Network (VCDN), CV CDN (·), is
utilized to further enhance the multi-view final prediction. Our model fully reveals the latent cross-
view connection by the generative model in latent subspaces, and further explores the high-level
view-correlation knowledge in label space. Due to the generative model, our model is compatible for
both multi-view and single-view scenarios.

performance. Previous research efforts [35, 36, 37, 38, 39] mainly utilize effective feature extraction

approaches to obtain view-specific representation first, then deploy fusion mechanism to integrate

these representations together. However, these methods assume data are accessible for all the views,

yet without considering the possible incomplete view issue which limits their potential applications.

Hence, their performances inevitably degrade when dealing with partial multi-view data. This

drawback further limits their potential compatibility in real-world applications. Moreover, different

views could provide class-level unique distinctiveness, and it is crucial to explore the correlation

across action classes and views to further improve the learning performance.

To this end, we propose a Generative Multi-View Action Recognition (GMVAR) frame-

work to address the challenges above. The adversarial generative network is leveraged to generate one

view conditioning on the other view, which fully explores the latent connections in both intra-view

and cross-view aspects. Our approach enhances the model robustness by employing adversarial

training, and naturally handles the incomplete view case by imputing the missing data. Particularly,

two generative networks are developed to learn the instance-level pairwise cross-view connection

knowledge, which could fully leverage the complementary information among views. More specifi-
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cally, each view’s generator is trained to reproduce its own latent representation, conditioning on

the other view’s information. By this way, our approach is able to effectively enrich the multi-view

representations, and handle the missing modality case. Moreover, an effective View Correlation

Discovery Network (VCDN) is proposed to further fuse the multi-view information in a higher-level

cross-view correlation in the label space. VCDN aims to fully explore the latent correlations in

both intra-view and cross-view aspects. Extensive experiments demonstrate the effectiveness of our

proposed approach by comparing state-of-the-art algorithms. The main contributions of our approach

are listed below:

• We proposed a generative multi-view action recognition framework, which can simultaneously

handle complete-view, partial-view, and missing-view scenarios using a unified strategy.

• The adversarial training is encapsulated into our model to explore the complementary informa-

tion shared by different modalities, which works as a regularizer to enhance the accuracy and

robustness of our model.

• A simple yet effective View Correlation Discovery Network (VCDN) is proposed to learn the

intra-view and cross-view label correlations in the higher-level label space. It further explores

the label information and significantly improves model performance.

3.2.2 Multi-view Action Recognition

Multi-view action recognition uses data taken from multiple views/resources to achieve

higher performance. It assumes different views are complementary which provide extra information

and help to distinguish actions. DA-Net [139] obtains both view-independent and view-specific

representations and utilizes a view classifier to combine the classification score from each view.

PM-GANs [140] deploys generative and feature fusion strategies for inferred action recognition.

[141] proposed a shared-specific feature factorization network which effectively fuses RGB and

depth information. [38] presents a joint learning model to simultaneously explore the shared and

feature-specific components to improve learning performance. [142] achieves modality hallucination

through shared weights neural network for image classification. [143] proposed a cascaded residual

autoencoder to handle missing view scenario. [123] fuses the action descriptors by utilizing a Multi-

view Super Vector. [124] designs a novel approach for combining optical flow into enhanced 3D

motion vector fields to achieve feature fusion. [144] proposes a first-person hand action recognition

baseline based on 3D hand pose and RGB view. [145, 146] explores a view-invariant feature
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extraction approach which is robust for actions captured from different views. Depth view is

considered in [131, 132] and there are skeleton based recognition approaches [133, 134, 135] for

action recognition.

Compared with existing methods, our approach is different in the following two aspects.

First, it is a general multi-view action recognition approach which could handle complete-view,

partial-view, and missing-view scenarios in a unified framework; second, instead of fusing views in

feature space, our approach explores the correlations residing in the high-level label space which

could deliver more accurate recognition results.

3.2.3 Generative Adversarial Network

GAN [105] consists of two networks: the generator and the discriminator. The generator

is trained to make generated samples while the discriminator tries to differentiate the samples.

Competition strategy drives both networks to enhance their abilities. Many GAN variants are recently

proposed. Mode-Regularized GAN [107] introduces ways to dramatically stabilize the training

process. Conditional GAN (CGAN) [109] extends the GAN model by adding extra conditional

information (e.g., label knowledge) to regularize the generation process. Auxiliary Classifier GAN

(ACGAN) [111] combines an auxiliary classifier with CGAN for image synthesis applications. Ding

et al. explore two-stage conditional generative model for zero-shot learning [110]. Small Object

Detection GAN (SOD-MTGAN) [147] generates high resolution small objects to improve multi-class

detection performance. [148] deploys generative strategy to handle missing view clustering task,

and [34] uses ensemble strategy to achieve final clustering result. Cycle GAN [108] utilizes the

generative approach and its inverse direction to achieve unpaired image style translation. However,

current models are mainly (e.g., GAN, CGAN) designed to subjectively diversify images and utilize

the human perceptual aspect (e.g., MS-SSIM [113]) to evaluate the diversity; while we want to

generate representations from one view to another view to solve the multi-view, partial-view, and

missing view problems.

Compared with other generative models, our model builds connections across views and is

designed to complement/boost the feature diversity for classification goal. Specifically, there are two

major differences compared with other generative models: first, our approach is proposed to explore

the generative strategy in the multi-view scenario. In addition, we deploy the generative strategy in

latent subspace instead of raw feature space which hopefully explores the data structure and obtains

more distinctive feature representations; second, a triplet loss is deployed to an autoencoder which
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fully utilizes the available supervision information to obtain high quality subspace.

3.2.4 Preliminaries

Given the multi-view training data X1
tr and X2

tr, where X1
tr ∈ Rd1×ntr and X2

tr ∈ Rd2×ntr

are the feature matrices of two views, where each column represents one instance, ntr is the training

instance number, and d1, d2 are the feature dimensions of view1 and view2. Ytr ∈ Rdl×ntr is the

one-hot label matrix, where dl is the dimension of the label space. Correspondingly, X1
te ∈ Rd1×nte ,

X2
te ∈ Rd2×nte , and Yte ∈ Rdl×nte are the test features and the label matrices. Considering some of

the test samples only containing single-view data, thus, the goal of our approach is to predict the label

matrix Yte, when either only single-view (X1
te or X2

te) or both views (X1
te and X2

te) are available.

Generally, the feature space is much more diverse than the label space especially in multi-view action

recognition scenario. To this end, we aim to compensate the visual feature and mitigate the gap

between the training and test samples especially when the other view is not available.

3.2.5 Subspace Conditional Feature Generation

Inspired by the idea of generative models [105, 109, 111], we propose the generative

networks to synthesize one view conditioned on the other view. By this way, the generators learn

the cross-view connections and also borrow shared motion components from other actions which

effectively diversifies the generated representations. Moreover, considering the original visual feature

contains high-level noise, and directly generating features conditioned on visual space could bring

in negative influence to the label prediction [60, 61]. To this end, we further propose a subspace

conditional generative mechanism to utilize the samples projected into the corresponding subspace

for view complementing/augmentation. The framework of our proposed model is shown in Figure 3.2.

Our approach contains two generators, G1(·) and G2(·), and their corresponding discriminators,

D1(·) andD2(·), which are trained in inverse direction; meanwhile, two view-specific encodersE1(·)
and E2(·) are introduced to encode both views from original feature spaces to the latent subspaces Z1

and Z2, respectively. Moreover, in order to make the projected samples more distinctive across views,

thus, the available label information associated with the triplet loss function [149] is utilized, where

the goal of triplet loss is to make the projected representations closer to the samples of the same

action than it is to any other actions. To this end, the objectives of E1(·) and E2(·) are introduced
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below:

LEm =
M∑
i=1

max
(

[‖Em(Xa
tri)− Em(Xp

tri
)‖22 − ‖Em(Xa

tri)− Em(Xn
tri)‖

2
2 + α], 0

)
, (3.1)

where M means there are M semi-hard triplets in the given embeddings and labels, m = {1, 2}
indicates E1(·) and E2(·). Xa

tri , X
p
tri

, and Xn
tri represent the i-th training sample as anchor, positive,

and negative respectively. α is a margin that is enforced between positive and negative pairs. By

this way, the learned subspace could obtain more distinctive and robust feature representations in

the corresponding subspace compared with the original feature space. Both E1(·) and E2(·) are

implemented by a two-layer fully-connected network with the LeakyReLU activation [118] deployed

in the first layer.

Then, two generative structures including G1(·), D1(·), G2(·), and D2(·), are designed

for cross-view representation generation goal. Since the two networks are in symmetrical positions

and have the same objective equations, thus, we only discuss G1(·) and D1(·) in this section. In our

model, the first term is the competing approach with D1(·) and makes the generated samples as real

as possible:

LG1d = −Ez∼pz(z) log
(

1−D1

(
G1(z|E1(X

1
tr))
))
, (3.2)

where z is the noise matrix and E1(X
1
tr) is the learned representation as the generation condition of

G1(·). Since the subspaces Z1 and Z2 are changed when encoders E1(·) and E2(·) are optimized, it

is difficult to directly obtain stable generative results. Thus, we include similarity constraint which

pulls the generated samples and real samples to be similar in subspace. The objective term is shown

as follows:

LG1s = Ez∼pz(z)

(
‖G1(z|E1(X

1
tr))− E2(X

2
tr)‖2F

)
. (3.3)

To this end, the overall objective of G1(·) is represented as LG1 = LG1d + λLG1s, where

λ is the trade-off parameter to balance the scales across discriminator loss and similarity loss. G1(·)
is a three-layer neural network with a batch normalization layer [119] to normalize input vectors and

stabilize the training procedure. The goal of D1(·) is to differentiate the generated samples and the

real samples in subspace Z2. And the objective function is shown below which manages to maximize

LD1 :

LD1 = EX∼pX(X) logD1

(
E2(X

2
tr)
)

+ Ez∼pz(z) log
(

1−D1

(
G1(z|E1(X

1
tr))
))
. (3.4)

In our implementation, D1(·) is a three-layer network. The first layer is a fully connected

layer with LeakyReLU activation [118]. The second layer is a mini-batch [117] layer, which increases
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the diversity of the fake samples. The activation functions of both layers are LeakyReLU and the last

layer is the Sigmoid function to output the real-fake possibility of the input representations. After the

generated representation is obtained in subspace, both the real and fake representations are forwarded

to the view-specific classifiers C1(·) and C2(·) to obtain the initial label prediction. The objective

functions of the classifiers include two objectives. The first one is trained to let the classifier predict

labels from real samples:

LCmr
= ‖Ytr − Cm(Em(Xm

tr ))‖2F, (3.5)

where m = {1, 2} indicates the classifiers C1(·), C2(·) and the encoders E1(·), E2(·). The second

one further obtains generated samples associated with the conditional subspace representations to

improve the robustness and generalization of the classifier:

LC1g
= ‖Ytr − C1(G2(z|E2(X

2
tr))‖2F, (3.6)

LC2g
= ‖Ytr − C2(G1(z|E1(X

1
tr))‖2F. (3.7)

To this end, the objective function of Cm(·) is LCm = βLCmr
+ (1− β)LCmg

, where β is

the trade-off parameters and we always set β = 0.5 in our experiments. Cm(·) aims to minimize LC

based on both real and generated features by benefiting from the augmented features.

3.2.6 View Correlation Discovery Network

Existing multi-view classification methods [30, 32, 31] either learn the score weights of

each view or try to fuse the multi-view features in low-level feature space. However, it is hard to well

align various views and easy to cause negative influence. While, in multi-view action recognition

scenario, we notice that some actions are distinctive in one view (e.g., Turning Around in RGB

view), and others are distinctive in the other view (e.g., Answering Phone in depth view). Thus,

simply learning the weights of each view cannot take the full advantage of the view-specific motion

characteristics, while exploring the latent relation hidden inside the label [71, 150] is crucial to obtain

higher performance.

To this end, we further propose a simple yet effective View Correlation Discovery Network

(VCDN), CV CDN (·), to refine the action prediction by exploring the label-level knowledge across

views. Instead of naively averaging/weighting the view-specific classification scores, VCDN explores

the initial scores and discovers the latent correlations across different views. To this end, the final

prediction is based on both the view-specific prediction and the learned across-view label-correlation

knowledge.
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The framework of CV CDN (·) is shown in Figure 3.2. After the initial classification results

are achieved by y1i = C1(E1(x
1
tri)) and y2i = C2(E2(x

2
tri)), where y1tri ∈ Rdl and y2tri ∈ Rdl

are the initial predictions of the corresponding i-th sample from the two views, x1tri and x2tri . We

make a transformation from the two view predictions, y1tri and y2tri , to obtain an cross-view label-

level adjacency matrix ci by multiplying y2tri and the transpose of y1tri as ci = y2tri · y
1>
tri , where

ci ∈ Rdl×dl is the adjacency matrix. By this way, the elements in ci are the multiplication of

the pair-wise predicted scores. Then, the obtained ci is reshaped to a d2l -dimensional vector and

forwarded to CV CDN (·) to predict the final prediction. To this end, CV CDN (·) could reveal the

latent correlation between the two views and help the model improve the learning performance. Since

both label vectors are achieved from real samples, thus, the objective function can be written as:

LCrr
V CDN

=

ntr∑
i=1

‖yi − CV CDN (y2tri · y
1>
tri )‖22, (3.8)

where yi ∈ Rdl is the ground-truth label vector of i-th sample, and rr means real-real setting.

Moreover, since G1(·) and G2(·) also contain effective cross-view structure information, thus, we

also want this knowledge to be transferred to CV CDN (·). To this end, we assign the predicted label

vector of the fake representations y1fi = C1(G2(z|E2(X
2
tri))), and y2fi = C2(G1(z|E1(X

1
tri))) be

utilized in the VCDN training procedure, where y1fi ∈ Rdl , and y2fi ∈ Rdl . We deploy both real-fake

and fake-real combinations to design the objective functions:

L
Crf

V CDN
=

ntr∑
i=1

‖yi − CV CDN (y2fi · y
1>
tri )‖22, (3.9)

L
Cfr

V CDN
=

ntr∑
i=1

‖yi − CV CDN (y2tri · y
1>
fi

)‖22. (3.10)

Then, we obtain the final objective of CV CDN (·):

LCV CDN
= γLCrr

V CDN
+

1− γ
2

(L
Crf

V CDN
+ L

Cfr
V CDN

), (3.11)

where γ is a trade-off parameter which balances the weights between real and fake label instances for

training the classifiers. CV CDN (·) is a two-layer fully connected network with Leak-ReLU activation

in the first layer.

Our model is an end-to-end model and all networks are trained simultaneously. It can also

be easily deployed to a wide range of applications. There are two major differences compared with

other methods: first, a generative mechanism is utilized to synthesize view information from the

other view, which fully explores the latent connection across the views; second, a View Correlation
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Discovery Network (VCDN) is proposed to fully explore the cross-view label correlations and

improve the learning performance. This strategy is effective due to the high correlation of actions

across different views.

3.3 Experiment

We visually and quantitatively evaluate the performance of our approach. In addition,

complete multi-view and incomplete multi-view settings are both utilized. The experimental results

demonstrate the effectiveness of our proposed approach.

3.3.1 Datasets and Experimental Setting

Three real-world multi-view action datasets are deployed to evaluate the performance of

our approach. The brief introduction of the datasets are listed below:

• Berkeley Multimodal Human Action Database (MHAD) [3] is a comprehensive multi-

modal human action dataset. It contains RGB, depth, skeleton, acceleration, and audio views.

MHAD contains 11 actions performed by 12 subjects for 5 repetitions of each action, yielding

660 action sequences in total.

• Depth-included Human Action dataset (DHA) [4] is an RGB-D multi-model dataset which

contains 23 categories performed by 21 subjects, and there are 483 video clips in total for

training and test. Each action has RGB images, human masks and depth data.

• UWA3D Multiview Activity (UWA) [1] is a multi-view dataset collected by Kinect sensors.

There are 10 subjects performing 30 human activities in a continuous manner without breaks

or pauses. The dataset is challenging because of varying viewpoints, self-occlusion and high

similarity among activities.

In our experiments, we utilize roughly half of the available samples for training and another

half for test. Specifically, there are 254 samples for training and 253 for test in the UWA dataset.

244 samples for training and 283 for test in MHAD dataset. 240 samples for training and the rest

243 for test in the DHA dataset. In the training procedure, both RGB and depth features are utilized.

In the test procedure, there are three settings including single-view (RGB or depth) and multi-view

(RGB-D) scenarios.
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3.3.2 Multi-view Action Recognition Baselines

We test our approach in multi-view (RGB-D) scenarios. In each setting, we also deploy

the state-of-the-art methods to demonstrate the effectiveness of our model. Comparison baselines are

briefly introduced below.

• Least Square Regression (LSR) is a straightforward linear regression model. The multi-view

features are concatenated together and LSR learns a linear mapping between the feature and

label spaces.

• Support Vector Machine (SVM) [151] is a classical and robust classifier which constructs

one hyperplane or multiple hyperplanes in high-dimensional space to achieve classification,

regression, or other tasks. We utilize the implementation from [152] for our baseline.

• Action Vector of Local Aggregated Descriptor (VLAD) [153] is an effective action repre-

sentation that aggregates local convolutional features and the video spatio-temporal content

by an extension of Net-VLAD layer. It integrates two-stream networks and is trainable in an

end-to-end framework.

• Temporal Segment Networks (TSN) [154] proposes a strategy that combines a sparse tempo-

ral sampling with video-level supervision. In this way, the entire video was learned effectively

while it still achieves accurate and stable performance. Weighted Depth Motion Maps

(WDMM) [131] aims to recognize human gestures from depth views, which is based on linear

aggregation of spatio-temporal information. It proposed a video summarization procedure for

hierarchical representation, which results in increasing intra-class similarity and also effectively

reduces the inter-class similarities.

• Auto-Weight Multiple Graph Learning (AMGL) [31] is a multi-view classification methods.

It learns the optimal weight for each graph automatically without introducing any additive

parameters, which is convex and easy to get the global optimal result in a semi-supervised

learning scenario.

• Multi-view Learning with Adaptive Neighbours (MLAN) [32] designes an adaptive graph-

based method which performs semi-supervised and local structure learning simultaneously. It

learns the ideal weight for each view without any parameter tuning.
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• Partial-modal Generative Adversarial Networks (PM-GANs) [140] learns a full-modal

representation based on partial modalities and implements feature-level fusion for infrared

action classification tasks.

3.3.3 Implementation

We deploy the TSN [154] structure to extract RGB features. Each video is divided into 5

segments. A snippet is randomly chosen from each segment. The ResNet-101 [155] with weights

pre-trained on ImageNet produces class scores for each snippet. After the training procedure, we

sample 3 snippets from each video instead of 25 which is utilized in TSN since we did not observe

significant improvements (less than 0.5%) between these two configurations. We obtain the final

features by concatenating the output of the last layer. To this end, each video is represented in

a 6144-dimensional feature vector. We utilize WDMM [131] to extract depth features. WDMM

samples each video in three three projection views. After that, HOG and LBP are used to extract

the features associated with VLAD and PCA for feature dimension reduction. We follow a similar

scheme to WDMM [131] and obtain 110-dimensional feature vectors. As shown in Figure 3.2, the

label vector concatenated with random noise is set as input to G1(·) and G2(·). We set the batch size

to 64. The Adam optimizer [121] is used for optimization and the learning rates are set to 0.00002,

0.0001, and 0.0002 for Cm(·), D1/2(·), and G1/2(·) respectively. λ limits the feature similarity

scales which is set to 0.1. In the training procedure, D1/2(·) and G1/2(·) are pre-trained to obtain

stable initialization, while G1/2(·) is optimized by minimizing LG1/2s without including LG1/2d at

first, and after 50 epochs, we switch LG1/2
back and train D1/2(·) simultaneously with the other

networks. The model is implemented using TensorFlow with GPU acceleration.

Since VLAD and TSN are specifically designed for action recognition in RGB view (single

view), thus, we follow the same protocol to pre-process the action data and run the code provided by

the authors and report the highest performance. The same strategy is also used to evaluate WDMM

in depth view. For general classification algorithms, we utilize the RGB features extracted from TSN,

and depth features from WDMM since these methods are new and achieve high performance in RGB

and depth representation learning respectively. To evaluate the SVM and LSR performance in the

multi-view scenario, we concatenate both RGB and depth features after normalization and achieve

a single feature vector for classification. Since AMGL and MLAN are designed for multi-view

learning, thus, we input RGB and depth features separately and evaluate the performance. PM-GANs

utilizes one view to complement another view for classification in the test stage, and we follow the
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Table 3.1: Action recognition performance on UWA dataset [1]

Method RGB RGB→Depth Depth Depth→RGB RGB+Depth

LSR 67.59 69.17 45.45 37.73 68.77

SVM [151] 69.44 68.53 34.92 34.33 72.72

VLAD [153] 71.54 - - - -

TSN [154] 71.01 - - - -

WDMM [131] - - 46.58 - -

AMGL [31] 69.17 71.54 39.92 35.96 68.53

MLAN [32] 67.19 67.19 33.28 33.61 66.64

PM-GANs [140] - 71.36 - 49.01 -

Ours - 73.53 - 50.35 76.28

Table 3.2: Action recognition performance on MHAD dataset [3]

Method RGB RGB→Depth Depth Depth→RGB RGB+Depth

LSR 96.46 97.17 47.63 42.51 97.17

SVM [151] 96.09 96.80 45.39 45.13 96.80

VLAD [153] 97.17 - - - -

TSN [154] 97.31 - - - -

WDMM [131] - - 66.41 - -

AMGL [31] 96.46 97.11 30.03 29.96 94.70

MLAN [32] 96.05 96.10 41.48 41.25 96.46

PM-GANs [140] - 96.76 - 66.84 -

Ours - 98.23 - 68.32 98.94
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Table 3.3: Action recognition performance on DHA dataset [4]

Method RGB RGB→Depth Depth Depth→RGB RGB+Depth

LSR 65.02 65.43 82.30 48.56 77.36

SVM [151] 66.11 70.24 78.92 78.18 83.47

VLAD [153] 67.13 - - - -

TSN [154] 67.85 - - - -

WDMM [131] - - 81.05 - -

AMGL [31] 64.61 59.05 72.84 67.33 74.89

MLAN [32] 67.91 67.91 72.96 72.83 76.13

PM-GANs [140] - 68.72 - 76.02 -

Ours - 69.72 - 83.48 88.72

same setting and evaluation in our experiments.

3.3.4 Performance Analysis

The experimental results are shown in Table 3.1, Table 3.2, and Table 3.3, where RGB,

Depth, and R+D indicate the classification accuracy of single RGB view, single depth view, and

RGB-D views respectively. Since our model conditionally generates another view based on the

available view, thus we show R→D and D→R which indicate these settings (e.g., R→D means the

depth view is conditionally generated by RGB view).To prove the effectiveness of the generated

view, we deploy the pseudo feature which is the average feature from the training samples as the

“generated” view of and forward to SVM, AMGL, and MLAN baselines. The results are also shown

in the same column of the tables.

From the results, we observe that in the single-view scenario, our model achieves the

highest performance. In D→R scenario, our generative strategy gains averagely 3% improvements

in all baseline datasets. For other pseudo feature baselines, only parts of the results have slight

improvements (e.g., 0.5%) while others are even lower than the single-view scenario. Therefore, the

consistent pseudo feature cannot provide any extra distinctive information for improving classifi-

cation performance, and concatenating the available and generated features directly (with/without

normalization) could even hurt the data structure and diminish final recognition performance. These

results demonstrate the effectiveness of the generative strategy of our model.
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Table 3.4: Recognition performance of our model and the modified fusion strategies in both low-level
feature space and high-level label space. It demonstrates the effectiveness of the VCDN framework
which considerably improves the performance. Please note that the performance is lower than our
complete model since we removed the generative module for a fair comparison.

Setting UWA MHAD DHA

RGB-C1 69.18 96.42 68.15

Depth-C2 45.28 63.05 79.79

RGBD-Fea-En-Con 68.78 96.82 70.85

RGBD-Fea-Ori-Con 69.22 97.32 70.83

RGBD-Lab-Con 70.38 96.28 80.95

RGBD-Lab-Ave 71.84 97.56 83.28

RGBD-Lab-Wei 71.15 97.17 83.95

RGBD-VCDN (Ours) 74.07 98.06 84.32

Table 3.5: Classification performance of our VCDN model compared with the multi-layer neural
networks. Different number of layers are evaluated and our VCDN achieves the highest performance.

Dataset 1-layer 2-layer 3-layer 4-layer VCDN

UWA 74.31 74.70 73.52 75.10 76.28

MHAD 97.83 97.88 96.47 95.76 98.94

DHA 86.01 87.24 85.19 82.72 88.72
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Figure 3.3: Recognition performance as the training epoch increases in UWA3D dataset [1]. The
shadow lines indicate the exact performances per iteration. It shows that our VCDN framework
achieves the highest performance after tens of iterations and keeps stable eventually. It demonstrates
the robustness and stability of VCDN in this multi-view scenario.

For the multi-view recognition scenario, which means both the RGB and depth views

are available, the generative strategy further augments the feature distribution which helps both

view-specific classifiers and the VCDN framework. The results shown in column R+D illustrate that

our model further improves the accuracy which is considerably higher than any single view scenario.

3.3.5 Ablation Study

To prove the effectiveness of VCDN, we utilize several feature/label fusion strategies to

achieve multi-view classification. In addition, to avoid the influence of the augmented samples from

the generative components, we first evaluate our model without including any generated samples.

The result is shown in Table 3.4. The first two lines show the single-view baseline performance

from the view-specific classifier C1(·) and C2(·); RGBD-Fea-Ori-Con indicates the performance

when the straightforward feature concatenation approach is processed; RGBD-Fea-En-Con indicates

the obtained features are concatenated together from E1(·), E2(·) and then goes through a network

which has the same structure as CV CDN (·); while RGBD-Lab-Con denotes the concatenated labels

from C1(·), C2(·) and also goes through the same structure classifier as CV CDN (·); meanwhile,

RGBD-Lab-Con shows the performance when the obtained labels from C1(·) and C2(·) are averaged;
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Figure 3.4: Performance of our GMVAR approach with (solid lines) and without (dashed lines) the
generative strategy in DHA dataset. Different colors indicate different settings. The shadow lines
indicate the exact performances per iteration. It demonstrates that the generative model does learn
the cross-view connection knowledge and further improves the recognition performance.

in addition, RGBD-Lab-Wei shows the weighted sum of C1(·) and C2(·) where the weight is learned

simultaneously in the training process; and the last line is our VCDN model. In this experiment,

we show the performance of fusing view information in both low-level (e.g., RGBD-Fea-En-Con

and RGBD-Fea-Ori-Con) and high-level (e.g., RGBD-Lab-Con and RGBD-Lab-Con). To further

prove the effectiveness of VCDN, we concatenate the outputs and forward to a deeper network (i.e.,

2,3,4-layer structures). The results (Table 3.5) show 2-layer structure tends to be enough. However,

it still works worse than our VCDN. The result indicates that multiple views knowledge does provide

extra distinctive features for action recognition; while high-level fusion performs better than low-level

fusion due to the significant difference across views, and our VCDN achieves the best performance

since it fully explores the label correlations.

Following the previous experimental setting, we further visualize the recognition perfor-

mance as the training epoch increases, and the result is shown in Figure 3.3, where we observe

that most fusion strategies cannot outperform the highest single-view classification performance.

We assume that simply feature level fusion cannot provide clear distinctive clue for classifier, and

it is too difficult to capture the correlation by itself; while label average approach achieves slight

improvement which indicates the high-level fusion performs well in multi-view action scenario;

meanwhile, our approach achieves the highest performance and keeps stable after around 100 epoch
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Figure 3.5: t-SNE [2] visualization results of the real and the generated test sample representations
in Z1 and Z2 respectively. The solid circles and the cross marks indicate the real and generated
representations, and different colors denote different action categories. We observe that real and
generated representations which belong to the same category are close to each other. It illustrates
that the generative model is capable of “recover” one view conditioned on the other view. And it
further demonstrates the effectiveness of the generative strategy in this multi-view scenario.

which further demonstrates the effectiveness of the VCDN model.

We evaluate our GMVAR with and without the generative strategy to prove its effectiveness

in our model. Figure 3.4 shows the recognition accuracy of GMVAR with and without the generative

model in single-view (RGB and depth) and multi-view (RGB-D) settings on DHA dataset. From

the results, we observe that the generative strategy indeed improves the performance of all settings

considerably. Moreover, we changed the GAN module to a mapping module for further comparison.

In this case, one modality is a mapping of the other, and the obtained performance (i.e., UWA:

74.52%, MHAD: 98.23%, DHA: 88.07%) is lower than the model with the generative model. We

assume GAN captures better feature distribution and diversifies the training space to achieve higher

performance.

Furthermore, we visualize the distribution of the real and generated representations of the

test samples in Z1 and Z2 by t-SNE [2] method respectively. The results are in Figure 3.5 which

illustrate that the real and generated representations which belong to the same action category are

close to each other and vice-versa. It indicates that this generative approach effectively learns the

across-view correlations in the subspace which can accurately generate similar representations to

complement/augment the other view. And the view-specific classifiers associated with the proposed

VCDN further utilizes the knowledge to improve the action recognition performance.
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3.4 Conclusion

We proposed a novel Generative Multi-View Action Recognition (GMVAR) framework

in this paper. A generative mechanism is designed to generate one view conditioned on the other

view. By this way, the comprehensive cross-view motion structure knowledge can be revealed. Due

to this generative strategy, our model works well in single-view and missing-view scenarios which

are difficult for other multi-view approaches. Moreover, we proposed an effective View Correlation

Discovery Network (VCDN) which further explores the cross-view correlation in high-level label

space and obtains more accurate classification results. Evaluation of three multi-view action datasets

and extensive ablation studies show the effectiveness of both generative model and VCDN framework.

All experimental results illustrate that our GMVAR is an effective, accurate, robust framework, and

compatible with a wide range of multi-view action recognition tasks.
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Chapter 4

Graph Representation Learning

4.1 Background

Representation learning has been the core problem of machine learning tasks. Graphs

representation learning is one of the challenging, practical, and potential task. The concept is shown

in Figure 4.1. Given a graph structured object, the goal is to represent the input graph as a dense

low-dimensional vector so that we are able to feed this vector into off-the-shelf machine learning or

data management techniques for a wide spectrum of downstream tasks, such as classification [40],

anomaly detection [41], information retrieval [42], and many others [43, 44].

Inductive and unsupervised graph learning is a critical requirement for predictive or

information retrieval tasks where label information is difficult to obtain. There are several unique

challenges in representation learning in graph structured data compared with other consistent data

formats. First, it is challenging to make graph learning inductive and unsupervised at the same time

even compared with its transductive or supervised counterparts, as learning processes guided by

reconstruction error based loss functions inevitably demand graph similarity evaluation that is usually

computationally intractable. Second, when inductive capability is required, it is necessary to deal

with the problem of node alignment such that we can discover common patterns across graphs. Third,

in the case of unsupervised learning, we have limited options to design objectives that guide learning

processes. To evaluate the quality of the learned latent representations, reconstruction errors are

commonly adopted. When node alignment meets reconstruction error, we have to answer a basic

question: Given two graphs G1 and G2, are they identical or isomorphic [156]? To this end, it could

be computationally intractable to compute reconstruction errors (e.g., using graph edit distance [157]

as the metric) in order to capture detailed structural information.
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Figure 4.1: Given an input graph, graph representation learning aims to obtain the dense presentation
of the given graph, where the edges and nodes could contain attributes.

Kernel-based methods were commonly utilized for learning from graph structured objects.

Similarity evaluation is one of the key operations in graph learning. Conventional graph kernels

rely on handcrafted substructures or graph statistics to build vector representations for graphs [158,

159, 160, 161, 162, 163]. Although kernel methods are potentially unsupervised and inductive, it is

difficult to make them handle rich node and edge attributes in many applications, because of the rigid

definition of substructures.

As deep neural networks achieve great progress in a wide range of machine learning and

computer vision tasks. Various deep-based graph representation learning methods also proposed.

Deep graph representation learning suggests a promising direction where one can learn unified

vector representations for graphs by jointly considering both structural and attribute information.

While most of existing works are either transductive [45, 164, 165] or supervised settings [166, 167,

168, 169, 170, 171, 172, 173, 174], a few recent studies focus on autoencoding specific structures,

such as directed acyclic graphs [46], trees or graphs that can be decomposed into trees [47], and

so on. In the case of graph generation, [48] proposes to generate graphs of similar graph statistics

(e.g., degree distribution), and [49] provides a method to generate graphs of similar random walks.

In addition, [42] propose a supervised method to learn graph similarity, and [175] theoretically

analyses the expressive power of existing message-passing based graph neural networks. [176]

propose anonymous walks for reconstruction tasks. It reconstructs a Markov process from the records

collected by limited/partial observations. In an anonymous walk procedure, the states are visited

according to the underlying transition probabilities, but no global state names are known. [177]

deploy anonymous walks as a crucial strategy for obtaining data-driven and feature-based graph

representations. An efficient sampling approach is designed which approximates the distributions for

large networks.
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4.2 SEED: Sampling, Encoding, and Embedding Distributions

4.2.1 Motivation

In this thesis, our work focuses on learning graph representations in an inductive and

unsupervised manner. As inductive methods provide high efficiency and generalization for making

inference over unseen data, they are desired in critical applications. For example, we could train a

model that encodes graphs generated from computer program execution traces into vectors so that

we can perform malware detection in a vector space. During real-time inference, efficient encoding

and the capability of processing unseen programs are expected for practical usage. Meanwhile, for

real-life applications where labels are expensive or difficult to obtain, such as anomaly detection [178]

and information retrieval [179], unsupervised methods could provide effective feature representations

shared among different tasks.

Specifically, we propose a general framework SEED (Sampling, Encoding, and Embedding

Distributions) for inductive and unsupervised representation learning on graph structured objects.

Instead of directly dealing with the computational challenges raised by graph similarity evaluation,

given an input graph, the SEED framework samples a number of subgraphs whose reconstruction

errors could be efficiently evaluated, encodes the subgraph samples into a collection of subgraph

vectors, and employs the embedding of the subgraph vector distribution as the output vector rep-

resentation for the input graph. One can further feed such vector representations to off-the-shelf

machine learning or data management tools for downstream learning or retrieval tasks. By theoretical

analysis, we demonstrate the close connection between SEED and graph isomorphism. Using public

benchmark datasets, our empirical study suggests the proposed SEED framework is able to achieve

up to 10% improvement, compared with competitive baseline methods.

Instead of directly addressing the computational challenge raised by evaluation of graph

reconstruction errors, SEED decomposes the reconstruction problem into the following two sub-

problems.

Q1: How to efficiently autoencode and compare structural data in an unsupervised fashion?

SEED focuses on a class of subgraphs whose encoding, decoding, and reconstruction errors

can be evaluated in polynomial time. In particular, we propose random walks with earliest visiting

time (WEAVE) serving as the subgraph class, and utilize deep architectures to efficiently autoencode

WEAVEs. Note that reconstruction errors with respect to WEAVEs are evaluated in linear time.

Q2: How to measure the difference of two graphs in a tractable way?
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Figure 4.2: SEED consists of three components: sampling, encoding, and embedding distribution.
Given an input graph, its vector representation can be obtained by going through the components.

As one subgraph only covers partial information of an input graph, SEED samples a

number of subgraphs to enhance information coverage. With each subgraph encoded as a vector,

an input graph is represented by a collection of vectors. If two graphs are similar, their subgraph

distribution will also be similar. Based on this intuition, we evaluate graph similarity by computing

distribution distance between two collections of vectors. By embedding distribution of subgraph

representations, SEED outputs a vector representation for an input graph, where distance between

two graphs’ vector representations reflects the distance between their subgraph distributions.

Unlike existing message-passing based graph learning techniques whose expressive power

is upper bounded by Weisfeiler-Lehman graph kernels [175, 180], we show the direct relationship

between SEED and graph isomorphism in theoretical analysis.

To more comprehensively demonstrate the effectiveness of the proposed model, we em-

pirically evaluate the effectiveness of the SEED framework via classification and clustering tasks

on public benchmark datasets. We observe that graph representations generated by SEED are able

to effectively capture structural information, and maintain stable performance even when the node

attributes are not available. Compared with competitive baseline methods, the proposed SEED

framework could achieve up to 10% improvement in prediction accuracy. In addition, SEED achieves

high-quality representations when a reasonable number of small subgraphs are sampled. By adjusting

sample size, we are able to make trade-off between effectiveness and efficiency. Unlike existing

kernel or deep learning methods, our SEED framework is unsupervised with inductive capability,

and naturally supports complex attributes on nodes and edges. Moreover, it works for arbitrary

graphs, and provides graph representations that simultaneously capture both structural and attribute

information.
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4.2.2 SEED Overview

The core idea of SEED is to efficiently encode subgraphs as vectors so that we can utilize

subgraph distribution distance to reflect graph similarity. We first give an abstract overview on the

SEED framework in Section 4.2.2, and then discuss concrete implementations for each component

in Section 4.2.3, 4.2.4, and 4.2.5, respectively. In Section 4.2.6, we share the theoretical insights in

SEED. For the ease of presentation, we focus on undirected graphs with rich node attributes in the

following discussion. With minor modification, our technique can also handle directed graphs with

rich node and edge attributes.

SEED encodes an arbitrary graph into a vector by the following three major components,

as shown in Figure 4.2.

• Sampling. A number of subgraphs are sampled from an input graph in this component. The

design goal of this component is to find a class of subgraphs that can be efficiently encoded

and decoded so that we are able to evaluate their reconstruction errors in a tractable way.

• Encoding. Each sampled subgraph is encoded into a vector in this component. Intuitively, if a

subgraph vector representation has good quality, we should be able to reconstruct the original

subgraph well based on the vector representation. Therefore, the design goal of this component

is to find an autoencoding system that provides such encoding functionality.

• Embedding distribution. A collection of subgraph vector representations are aggregated into

one vector serving as the input graph’s representation. For two graphs, their distance in the

output vector space approximates their subgraph distribution distance. The design goal of this

component is to find such an aggregation function that preserves a pre-defined distribution

distance.

Although there could be many possible implementations for the above three components,

we propose a competitive implementation in this paper, and discuss them in detail in the rest of this

section.

4.2.3 Sampling

In this paper, we propose to sample a class of subgraphs called WEAVE (random Walk

with EArliest Visit timE). Let G be an input graph of a node set V (G) and an edge set E(G). A

WEAVE of length k is sampled from G as follows.
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Figure 4.3: Expressive power comparison between WEAVEs and vanilla random walks: while blue
and orange walks cannot be differentiated in terms of vanilla random walks, the difference under
WEAVEs is outstanding.

• Initialization. A starting node v(0) is randomly drawn from V (G) at timestamp 0, and its

earliest visiting time is set to 0.

• Next-hop selection. Without loss of generality, assume v(p) is the node visited at timestamp p

(0 ≤ p < k). We randomly draw a node v(p+1) from v(p)’s one-hop neighborhood as the node

to be visited at timestamp p+ 1. If v(p+1) is a node that we have not visited before, its earliest

visiting time is set to p+ 1; otherwise, its earliest visiting is unchanged. We hop to v(p+1).

• Termination. The sampling process ends when the timestamp reaches k.

In practical computation, a WEAVE is denoted as a matrix X = [x(0),x(1), · · · ,x(k)].

In particular, x(p) = [x
(p)
a ,x

(p)
t ] is a concatenation of two vectors, where x

(p)
a includes attribute

information for the node visited at timestamp p, and x
(p)
t contains its earliest visit time. As earliest

visit time is discrete, we use one-hot scheme to represent such information, where x
(p)
t is a k-

dimensional vector and x
(p)
t [q] = 1 means the earliest visit time is timestamp q. If one aims

to sample s WEAVEs from an input graph, the output of this component is a set of s matrices

{X1, X2, ..., Xs}.
Difference between WEAVEs and vanilla random walks. The key distinction comes

from the information of the earliest visit time. Vanilla random walks include coarser-granularity

structural information, such as neighborhood density and neighborhood attribute distribution [45].

As vanilla random walks have no memory on visit history, detailed structural information related to

loops or circles is ignored. While it is also efficient to encode and decode vanilla random walk, it is

difficult to evaluate finer-granularity structural difference between graphs. Unlike vanilla random

walks, WEAVEs utilize earliest visit time to preserve loop information in sampled subgraphs. As

shown in Figure 4.3, while we cannot tell the difference between walk w1 and walk w2 using vanilla
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random walk, the distinction is outstanding under WEAVEs. Note that it is equally efficient to encode

and decode WEAVEs, compared with vanilla random walks.

In addition, WEAVE is also related to anonymous random walks [177, 176]. By excluding

attribution information, a WEAVE is reduced to an anonymous random walk.

4.2.4 Encoding

Given a set of sampled WEAVEs of length k {X1, X2, ..., Xs}, the goal is to encode each

sampled WEAVE into a dense low-dimensional vector. As sampled WEAVEs share the same length,

their matrix representations also have identical shapes. Given a WEAVE X , one could encode it by

an autoencoder [181] as follows.
z = f(X; θe),

X̂ = g(z; θd),
(4.1)

where z is the dense low-dimensional representation for the input WEAVE, f(·) is the encoding

function implemented by an MLP with parameters θe, and g(·) is the decoding function implemented

by another MLP with parameters θd. The quality of z is evaluated through reconstruction errors as

follows,

L = ‖X − X̂‖22. (4.2)

By conventional gradient descent based backpropagation [121], one could optimize θe and θd via

minimizing reconstruction error L. After such an autoencoder is well trained, the latent representation

z includes both node attribute information and finer-granularity structural information simultaneously.

Given s sampled WEAVEs of an input graph, the output of this component is s dense low-dimensional

vectors {z1, z2, · · · , zs}.

4.2.5 Embedding distribution

Let G andH be two arbitrary graphs. Suppose subgraph (e.g., WEAVE) distributions for G
andH are PG and PH, respectively. In this component, we are interested in evaluating the distance

between PG and PH. In this work, we investigate the feasibility of employing empirical estimate of

the maximum mean discrepancy (MMD) [182] to evaluate subgraph distribution distances, without

assumptions on prior distributions, while there are multiple candidate metrics for distribution distance

evaluation, such as KL-divergence [183] and Wasserstein distance [184]. We leave the detailed

comparison among different choices of distance metrics in our future work.
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Given s subgraphs sampled from G as {z1, · · · , zs} and s subgraphs sampled fromH as

{h1, · · · ,hs}, we can estimate the distance between PG and PH under the MMD framework:

M̂MD(PG , PH) =
1

s(s− 1)

s∑
i=1

s∑
j 6=i

k(zi, zj) +
1

s(s− 1)

s∑
i=1

s∑
j 6=i

k(hi,hj)

− 2

s2

s∑
i=1

s∑
j=1

k(zi,hj)

=‖µ̂G − µ̂H‖22. (4.3)

µ̂G and µ̂H are empirical kernel embeddings of PG and PH, respectively, and are defined as follows,

µ̂G =
1

s

s∑
i=1

φ(zi),

µ̂H =
1

s

s∑
i=1

φ(hi),

(4.4)

where φ(·) is the implicit feature mapping function with respect to the kernel function k(·, ·). To this

end, µ̂G and µ̂H are the output vector representation for G andH, respectively.

In terms of kernel selection, we find the following options are effective in practice.

Identity kernel. Under this kernel, pairwise similarity evaluation is performed in the

original input space. Its implementation is simple, but surprisingly effective in real-life datasets,

µ̂G =
1

s

s∑
i=1

zi,

µ̂H =
1

s

s∑
i=1

hi,

(4.5)

where output representations are obtained by average aggregation over subgraph representations.

Commonly adopted kernels. For popular kernels (e.g., RBF kernel, inverse multi-

quadratics kernel, and so on), it could be difficult to find and adopt their feature mapping functions.

While approximation methods could be developed for individual kernels [185], we could train a deep

neural network that approximates such feature mapping functions. In particular,

µ̂′G =
1

s

s∑
i=1

φ̂(zi; θm),

µ̂′H =
1

s

s∑
i=1

φ̂(hi; θm),

D(PG , PH) = ‖µ̂′G − µ̂′H‖22,

(4.6)
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where φ̂(·; θm) is an MLP with parameters θm, and D(·, ·) is the approximation to the empirical

estimate of MMD. Note that µ̂′G and µ̂′H are output representations for G and H, respectively. To

train the function φ̂(·; θm), we evaluate the approximation error by

J(θm) = ‖D(PG , PH)− M̂MD(PG , PH)‖22, (4.7)

where θm is optimized by minimizing J(θm).

4.2.6 Theoretical insights

In this section, we sketch the theoretical connection between SEED and well-known

graph isomorphism [156], and show how walk length in WEAVE impacts the effectiveness in graph

isomorphism tests. The full proof of theorems and lemmas is detailed in Appendix.

To make the discussion self-contained, we define graph isomorphism and its variant with

node attributes as follows.

• Graph isomorphism. G = (V (G), E(G)) and H = (V (H), E(H))) are isomorphic if there

is a bijection function f : V (G)⇔ V (H) such that ∀(u, v) ∈ E(G)⇔ (f(u), f(v)) ∈ E(H).

• Graph isomorphism with node attributes. Let G = (V (G), E(G), l1),H = (V (H), E(H), l2)

be two attributed graphs, where l1, l2 are attribute mapping functions l1 : V (G)→ Rd, l2 :

V (H) → Rd, and node attributes are denoted as d-dimensional vectors. Then G and

H are isomorphic with node attributes if there is a bijection f : V (G) ⇔ V (H), s.t.,

∀(u, v) ∈ E(G)⇔ (f(u), f(v)) ∈ E(H), and ∀u ∈ V (G), l1(u) = l2(f(u)).

• Identical distributions. Two distributions P and Q are identical if and only if their first order

Wasserstein distance [186] W1(P,Q) = 0.

The following theory suggests the minimum walk length for WEAVEs, if every edge in a

graph is expected to be visited.

Lemma 1. Let G = (V (G), E(G)) be a connected graph, then there exists a walk of length

k which can visit all the edges of G, where k ≥ 2|E(G)| − 1.

Proof. We will use induction on |E(G)| to complete the proof.

Basic case: Let |E(G)| = 1, the only possible graph is a line graph of length 1. For such a

graph, the walk from one node to another can cover the only edge on the graph, which has length

1 = 2 · 1− 1.
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Induction: We assume for all the connected graphs on less than m edges (i.e., |E(G)| ≤
m − 1), there exist a walk of length k which can visit all the edges if k ≥ 2|E(G)| − 1. Then we

will show for any connected graph with m edges, there also exists a walk which can cover all the

edges on the graph with length k ≥ 2|E(G)| − 1.

Let G = (V (G), E(G)) be a connected graph with |E(G)| = m. Firstly, we assume G is

not a tree, which means there exist a cycle on G. By removing an edge e = (vi, vj) from the cycle, we

can get a graph G′ on m− 1 edges which is still connected. This is because any edge on a cycle is not

a bridge. Then according to the induction hypothesis, there exists a walk w′ = v1v2 . . . vi . . . vj . . . vt

of length k′ ≥ 2(m− 1) + 1 which can visit all the edges on G′ (The walk does not necessarily start

from node 1, v1 just represents the first node appears in this walk). Next, we will go back to our

graph G, as G′ is a subgraph of G, w′ is also a walk on G. By replacing the first appeared node vi on

walk w′ with a walk vivjvi, we can obtain a new walk w = v1v2 . . . vivjvi . . . vj . . . vt on G. As w

can cover all the edges on G′ and the edge e with length k = k′ + 2 ≥ 2(m− 1)− 1 + 2 = 2m− 1,

which means it can cover all the edges on G with length k ≥ 2|E(G)| − 1.

Next, consider graph G which is a tree. In this case, we can remove a leaf vj and its incident

edge e = (vi, vj) from G, then we can also obtain a connected graph G′ with |E(G′)| = m − 1.

Similarly, according to the induction hypothesis, we can find a walk w′ = v1v2 . . . vi . . . vt on

G′ which can visit all the m − 1 edges of G′ of length k′, where k′ ≥ 2(m − 1) − 1. As G′

is a subgraph of G, any walk on G′ is also a walk on G including walk w′. Then we can also

extend walk w′ on G by replacing the first appeared vi with a walk vivjvi, which produce a new

walk w = v1v2 . . . vivjvi . . . vt. w can visit all the edges of G′ as well as the edge e with length

k = k′ + 2 ≥ 2(m − 1) − 1 + 2 = 2m − 1. In other words, w can visit all the edges on G with

length k ≥ 2|E(G)| − 1. Now, we have verified our assumption works for all the connected graphs

with m edges, hence we complete our proof. (To give an intuition for our proof of lemma 1, we

provide an example of 5 edges in Figure 4.4)

Figure 4.4 (a1) illustrates an example graph G which is a connected graph on 5 edges but

not a tree. By removing an edge (v2, v5) from the cycle, we can get a connected graph G′ (Figure 4.4

(a2)) with 4 edges. G′ has a walk w′ = v1v2v3v4v5 which covers all the edges of G′, as w′ is also

a walk on G, by replacing v5 with walk v5v2v5 in w′, we can get w = v1v2v3v4v5v2v5 which can

visit all the edges of G. Figure 4.4 (b1) shows an example graph G which is a tree on 5 edges. By

removing the leaf v4 and its incident edge (v4, v3), we can get a tree G′ with 4 edges (Figure 4.4

(b2)). G′ has a walk w′ = v1v2v3v5 which covers all the edges of G′, as w′ is also a walk on G, by

replacing v3 with v3v4v3 in w′ we can get a walk w = v1v2v3v4v3v5 which can cover all the edges
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Walk length analysis

(a2) Graph 𝒢′ corresponds to 𝒢 in (a1)
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Figure 4.4: Different types of graphs with random walk w which can visit all the edges.

of G. �

Now, we are ready to present the connection between SEED and graph isomorphism.

Theorem 1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs.

Suppose we can enumerate all possible WEAVEs from G andH with a fixed-length

k ≥ 2 max{|E(G)|, |E(H)|} − 1, (4.8)

where each WEAVE has a unique vector representation generated from a well-trained autoencoder.

The Wasserstein distance between G’s andH’s WEAVE distributions is 0 if and only if G andH are

isomorphic.

The following theory shows the connection in the case of graphs with nodes attributes.

The following lemma is crucial for the proof of Theorem 1.

Lemma 2. Suppose that w, w′ are two random walks on graph G and graphH respectively,

if the representation of w and w′ are the same, i.e., rw = rw′ , the number of the distinct edges on w

and w′ are the same, as well as the number of the distinct nodes on w and w′.

Proof. Let n1, n2 be the number of distinct nodes on w, w′ respectively, let m1, m2 be the number

of distinct edges on w and w′ respectively. First, let’s prove n1 = n2. We will prove this by

contradiction. Assume n1 6= n2, without loss of generality, let n1 > n2. According to our encoding

rule, the largest number appears in a representation vector is the number of the distinct nodes in the

corresponding walk. Hence, the largest element in vector rw is n1 while the largest element in vector

rw′ is n2. Thus, rw 6= rw′ , which contradicts our assumption. Therefore, we have n1 = n2.

Next, we will show m1 = m2. We will also prove this point by contradiction. Assume

m1 6= m2, without loss of generality, let m1 > m2. As we have proved n1 = n2, each edge on w

and w′ will be encoded as a vector like [k1, k2]
>, where k1, k2 ∈ [n1]. A walk consists of edges,

hence the representation of a walk is formed by the representation of edges. Since m1 > m2, which
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means there exists at least two consecutive element [k1, k2]
> in rw which will not appear in rw′ , thus

rw 6= rw′ , which is a contradiction of our assumption. As a result, we can prove m1 = m2.

Proof. We will first prove the sufficiency of the theorem, i.e., suppose graphs G = (V (G), E(G))

andH = (V (H), E(H)) are two isomorphic graphs, we will show that the WEAVE’s distribution

on G andH are the same.

Let A be the set of all the possible walks with length k on G, B be the set of all the

possible walks with length k onH. Each element of A and B represents one unique walk on G and

H respectively. As we have assumed a WEAVE is a class of subgraphs, which means a WEAVE

may correspond to multiple unique walks in A or B. Consider a walk w = v1v2 . . . vi . . . vt ∈ A
(vi represent the ith node appears in the walk), for any edge e = (vi, vj) on wi, as e ∈ E(G),

according to the definition of isomorphism, there exists a mapping f : V (G) → V (H) such

that (f(vi), f(vj)) ∈ E(H). If we map each node on wi to graph H, we can get a new walk

w′i = f(v1)f(v2)...f(vt) onH as each edge (f(vi), f(vj)) ∈ E(H), besides, as the length of w′i is

also k, we have w′i ∈ B. Hence, we can define a new mapping g : A→ B, s.t.

∀wi = v1v2 . . . vt ∈ A, g(wi) = f(v1)f(v2) . . . f(vt) = w′i ∈ B. (4.9)

Next, we will show that g is a bijective mapping. Firstly, we will show that f is injective.

Suppose g(w1) = g(w2), we want to show w1 = w2. Assume w1 6= w2, there must exists

one step i such that w1(i) 6= w2(i), let w1(i) = (v
(1)
i , v

(1)
j ), w2(i) = (v

(2)
i , v

(2)
j ), then we have

(f(v
(1)
i ), f(v

(1)
j )) 6= (f(v

(2)
i ), f(v

(2)
j )) due to the definition of isomorphism. According to the

mapping rule of f , (f(v
(1)
i ), f(v

(1)
j )) is the ith step of f(w1), (f(v

(2)
i ), f(v

(2)
j )) is the ith step of

g(w2), thus the walk g(w1) 6= g(w2), which contradicts our assumption. Therefore, the assumption

is false, we have w1 = w2. Then we will show that g is surjective, i.e., for any w′ ∈ B, there exists a

w ∈ A such that g(w) = w′. We will also prove this by contradiction, suppose there exists a walk

w′ ∈ B such that we can’t find anyw ∈ A to make g(w) = w′. Letw′ = v1v2 . . . vt, according to the

definition of isomorphism, for any edge (vi, vj) ∈ E(H) onw′, we have (f−1(vi), f
−1(vj)) ∈ E(G),

where f−1 represents the inverse mapping of f . Hence

w = f−1(v1)f
−1(v1) . . . f

−1(vt) ∈ A, (4.10)

as w is a walk on graphH with length k. Now consider g(w), based on the mapping rule of g, we

need to map each node on w via f , i.e.,

g(w) = f(f−1(v1))f(f−1(v1)) . . . f(f−1(vt)) = v1v2 . . . vt = w′, (4.11)
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which is a contradiction to our assumption. Thus we have proved g is an injective mapping as well as

a surjective mapping, then we can conclude that g is a bijective mapping.

Then we will show the WEAVEs’ distribution of G and H are the same. Since in our

assumption, |E(G)| is limited, then |A| and |B| are limited, besides, according to our encoding

rule, different walks may correspond to one specific WEAVE while each WEAVE corresponds to a

unique representation vector, thus the number of all the possible representation vectors is limited for

both G and H. Thus, the representation vector’s distributions PG for graph G and representation’s

distributions PH for graphH are both discrete distributions. To compare the similarity of two discrete

probability distributions, we can adopt the following equation to compute the Wasserstein distance

and check if it is 0.

(P,Q) = min
π

m∑
i=1

n∑
j=1

π(i, j)s(i, j),

s.t.,
m∑
i=1

π(i, j) = wqj ,∀j,

n∑
j=1

π(i, j) = wpi ,∀i,

π(i, j) ≥ 0,∀i, j,

(4.12)

where W1(P,Q) is the Wasserstein distance of probability distribution P and Q, π(i, j) is the cost

function and s(i, j) is a distance function, wqj and wpj are the probabilities of qj and pj respectively.

Since we have proved g : A→ B is a bijection, besides, according to our encoding rule,

g(w) and w will correspond to the same WEAVE, hence they will share the same representation

vector. As a consequence, for each point (gi, wgi) (gi corresponds to a representation vector, wgi
represents the probability of gi) in the distribution PG , we can find a point (hi, whi) in PH such that

gi = hi, and wgi = whi . Then consider (4.12), for PG and PH, if we let π be a diagonal matrix

with [wp1 , wp2 , . . . , wpm ] on the diagonal and all the other elements be 0, we can make each element

in the sum
∑m

i=1

∑n
j=1 π(i, j)s(i, j) be 0, as this sum is supposed to be nonnegative, its minimum

is 0, hence W1(PG , PH) = 0, which means for two isomorphic graphs G and H, their WEAVE’s

distributions PG and PH are the same.

Next we will prove the necessity of this theorem. Suppose that the Wasserstein distance

between the walk representation distributions PG and PH is 0, we will show that graph G andH are

isomorphic. Let the number of the nodes of graph G is n1, the number of the nodes of graph H is

n2, let the number of the edges on graph G is m1, the number if the edges on graph H is m2. Let

k = 2 max{m1,m2} − 1.
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Now, we will give a bijective mapping f : V (G) → v(H). First, consider the walks on

graph G, as k = 2 max{m1,m2} − 1 ≥ 2m1 − 1, according to Lemma 1, there exists at least one

walk of length k on graph G which can cover all the edges of G. Consider such a walk wG , let

rG = [1, 2, 3, ..., t]> be the representation vector (corresponds to a WEAVE) we obtained according

to our encoding rule. Now, we will use this representation to mark the nodes on graph G. Mark the

first node in this walk as u1 (corresponds to 1 in the representation), the second node as u2, the ith

appearing node in wG is ui, continue this process until we marked all the new appearing nodes in

this walk. Since wG can visit all the edges of graph G, all the nodes on this graph will definitely be

marked, hence the last new appearing node will be marked as un1 . Now, let’s consider the walks on

graphH. As we have assumed that W1(PG , PH) = 0, which means that for each point (gi, wgi) on

PG , we can find a point (hi, whi) in PH such that gi = hi, and wgi = whi . As a consequence, as rg

is a point on PG , there must be a point rh on H such that rh = rg = [1, 2, 3, ..., t]>. Then choose

any walk wh onH which produce rh, and apply the same method to mark the nodes in this walk in

order as v1, v2, ..., vn1 . Now we can define the mapping f , let f : V (G)→ V (H), s.t., f(ui) = vi

for ∀i ∈ [n1], which is exactly the mapping we are looking for.

1 © NEC Corporation 2016 NEC Group Internal Use Only
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Figure 4.5: Walk representation distributions of graphs without attributes, graphs with discrete
attributes, and graphs with continuous attributes.

Next, we just need show for each edge (ui, uj) ∈ E(G), we have (f(ui), f(uj)) ∈ E(H),

and vice versa, then we can prove G andH are isomorphic. The first direction is obviously true as

wG covers all the edges on G, for any edge (ui, uj) in wG , we have (f(ui), f(uj)) = (vi, vj) which

belongs to wh, since wh is walk on H, we have (vi, vj) ∈ E(H). Then we will prove the reverse
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direction, i.e., for any (vi, vj) = (f(ui), f(uj)) ∈ E(H), we have (ui, uj) ∈ E(G). To prove this,

we will first show that the number of edges of graph G andH are the same, i.e., m1 = m2. Suppose

this is not true, without loss of generality, let m1 > m2. Since PG and PH are the results of random

walks for infinite times. Then there must exists some walks which can visit the additional edges on

G, as a consequence, we can obtain some representation vector which will not appear in PH, which

contradicts our assumption. Hence, we havem1 = m2. Besides, since we have rg = rh, according to

Lemma 2, we can derive that the number of distinct edges on wg and wh are the same. As wg covers

all the edges on G, hence the number of distinct edges on wg is m1. Therefore, the number of distinct

edges on wh is also m1, which means wh also has visited all the edges onH. As for any edge (vi, vj)

on wh, we have (ui, uj) on wh, in other words, we have (ui, uj) = (f−1(vi), f
−1(vj)) ∈ E(G).

Hence we complete the proof.

Figure 4.5 shows the walk representation distributions for a 4 nodes ring with walk length

k = 2 in three different cases: without node attributes, with discrete node attributes, and with

continuous node attributes. We can see the attributes will have an influence to the distributions,

more specifically, the probability of each unique walk keeps the same no matter what the attributes

are, however, the probability of each representation vector may vary as different unique walks may

correspond to one representation vector, and the attributes may influence how many representation

vectors there will be and how many unique walks correspond to a representation vector. To clarify,

in Figure 4.5 (a), the ring graph does not have nodes attributes, there exists 16 unique walks in

total, among them walk ABD, BDC, DCA, CAB, DBA, CDB, ACD, BAC will all be encoded

as r1 =
[
1 2 3

]>
, walk ABA, BAB, BDB, DBD, CDC, DCD, CAC, ACA will be encoded as

r2 =
[
1 2 1

]>
. Hence, for a graph in Figure 4.5 (a), we have Pr(r1) = 8

16 , Pr(r2) = 8
16 .

In Figure 4.5 (b), each node has a discrete attribute, i.e., red or green, there are still 16 unique

walks in total. However, in this case, there exits four different representation vectors, walk ABC,

CBA, ADC, CDA will be encoded as r1 =
[
1R 2G 3R

]>
, where R represents Red while G

represents Green; walk BCD, DCB, DAB, DCB correspond to r2 =
[
1G 2R 3G

]>
; walk ABA,

ADA, CDC, CBC correspond to r3 =
[
1R 2G 3R

]>
; walk BAB, BCB, DCD, DAD correspond

to r3 =
[
1R 2G 3R

]>
. In this case, we have Pr(r1) = Pr(r2) = Pr(r3) = Pr(r4) = 4

16 .

In the last, let’s consider the case when there exists continuous node attributes, for such a graph,

the value of node attributes has infinite choices, hence, it is very likely that each node may have

different attributes. As a consequence, each unique walk will correspond to a unique representation
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vector. In our example Figure 4.5 (c), there also exists 16 unique walks, each walk has a particular

representation vector, hence, the probability of each representation vector is 1
16 .

Theorem 2. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs

with node attributes. Suppose we can enumerate all possible WEAVEs on G and H with a fixed-

length k ≥ 2 max{|E(G)|, |E(H)|} − 1, where each WEAVE has a unique vector representation

generated from a well-trained autoencoder. The Wasserstein distance between G’s andH’s WEAVE

distributions is 0 if and only if G andH are isomorphic with node attributes.

Proof. The proof for Theorem 2 is quite similar as the proof of Theorem 1, this is because the

attributes just influence the representation vector form and how many unique walks correspond to a

representation vector, however, the probability of each unique walk keeps the same. Hence, we can

use a similar method to complete the proof. Similarly, we will first prove the sufficiency. Let G and

H be two isomorphic graphs with attributes, we will prove that the walk representations distribution

of G andH are the same. Suppose that A and B are the sets of possible walks of length k on G and

H respectively. By applying the same analysis method as in the proof of Theorem 1, we can show

that there exists a bijective mapping g : A→ B such that for ∀wi = v1v2v3 . . . vt ∈ A, we have

g(wi) = f(v1)f(v2) . . . f(vt) ∈ B, (4.13)

where f : V (G) → V (H) satisfies ∀(vi, vj) ∈ E(G), we have (f(vi), f(vj)) ∈ E(H) and for

∀vi ∈ V (G), the attribute of vi and f(vi) are the same. Hence, according to our encoding rule, wi and

f(wi) will be encoded as the same representation vector, which means for each point (rgi , P r(rgi))

in the representation distribution of G, we can find a point (rhi , P r(rhi)) in the distribution of H
such that rgi = rhi , Pr(rgi) = Pr(rhi). Thus, we can obtain the Wasserstein distance of distribution

PG and the distribution PH is W1(PG , PH) = 0 via a similar approach as in Theorem 1. In other

words, we have PG = PH. In addition, the necessity proof of Theorem 2 is the same as Theorem

1.

Note that similar results can be easily extended to the cases with both node and edge

attributes.

If both the nodes and edges in a graph have attributes, the graph is an attributed graph

denoted by G = (V,E, α, β), where α : V → LN and β : E → LE are nodes and edges labeling

functions, LN , LE are sets of labels for nodes and edges. In this case, the graph isomorphism are

defined as:
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Definition . Given two graphs G = (V (G), E(G), αG , βg) andH = (V (H), E(H), αH, βH),

then G andH are isomorphic with node attributes as well as edge attributes if there is a bijection

f : V (G)⇔ V (H)

∀uv ∈ E(G)⇔ f(u)f(v) ∈ E(H), (4.14)

αG(u) = αH(f(u)), ∀u ∈ V (G), (4.15)

βG(u, v) = βH(f(u), f(v)). (4.16)

Corollary 1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs

with node attributes. Suppose we can enumerate all possible WEAVEs on G and H with a fixed-

length k ≥ 2 max{|E(G)|, |E(H)|} − 1, where each WEAVE has a unique vector representation

generated from a well-trained autoencoder. The Wasserstein distance between G’s andH’s WEAVE

distributions is 0 if and only if G andH are isomorphic with both node attributes and edge attributes.

Proof. When both nodes and edges of a graph are given attributes, the representation vectors of

random walks will be different. However, just like the cases with only node attributes, the probability

of each unique walk on the graph keeps the same. Hence, we can follow a similar analysis method as

Theorem 2 to complete this proof.

The theoretical results suggest the potential power of the SEED framework in capturing

structural difference of graph data. As shown above, in order to achieve the same expressive power

of graph isomorphism, we need to sample a large number of WEAVEs with a long walk length so

that all possible WEAVEs can be enumerated. The resource demand is impractical. However, in the

empirical study in Section ??, we show that SEED can achieve state-of-the-art performance, when

we sample a small number of WEAVEs with a reasonably short walk length.

4.3 Experiment

4.3.1 Datasets and Experimental Setting

We employ seven public benchmark datasets to evaluate the effectiveness of SEED. The

brief introductions of the datasets are listed below.

• Deezer User-User Friendship Networks (Deezer) [187] is a social network dataset which is

collected from the music streaming service Deezer. It represents a friendship network of users
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from three European countries (i.e., Romania, Croatia and Hungary). There are three graphs

which correspond to the three countries. Nodes represent the users and edges are the mutual

friendships. For the three graphs, the numbers of nodes are 41, 773, 54, 573, and 47, 538,

respectively, and the number of edges are 125, 826, 498, 202, and 222, 887, respectively.

There exist 84 distinct genres, and genre notations are considered as node features. Thus, node

features are represented as 84-dimensional multi-hot vectors.

• Mutagenic Aromatic and Heteroaromatic Nitro Compounds (MUTAG) [188] is a chemi-

cal bioinformatics dataset, which contains 188 chemical compounds. The compounds can be

divided into two classes according to their mutagenic effect on a bacterium. The chemical data

can be converted to graph structures, where each node represents an atom. Explicit hydrogen

atoms have been removed. In the obtained graph, the node attributes represent the atom types

(i.e., C, N, O, F, I, Cl and Br) while the edge attributes represent bond types (i.e., single, double,

triple or aromatic).

• NCI1 [189] represents a balanced subset of datasets of chemical compounds screened for

activity against non-small cell lung cancer and ovarian cancer cell lines, respectively. The

label is assigned based on this characteristic. Each compound is converted to a graph. There

are 4, 110 graphs in total with 122, 747 edges.

• PROTEINS [190] is a bioinformatics dataset. The proteins in the dataset are converted to

graphs based on the sub-structures and physical connections of the proteins. Specifically,

nodes are secondary structure elements (SSEs), and edges represent the amino-acid sequence

between the two neighbors. PROTEINS has 3 discrete labels (i.e., helix, sheet, and turn).

There are 1, 113 graphs in total with 43, 471 edges.

• COLLAB [191] is a scientific collaboration dataset. It belongs to a social connection network

in general. COLLAB is collected from 3 public collaboration datasets (i.e., Astro Physics,

Condensed Matter Physics, and High Energy Physics). The ego-networks are generated for

individual researchers. The label of each graph represents the field which this researcher

belongs to. There are 5, 000 graphs with 24, 574, 995 edges.

• IMDB-BINARY [192] is a collaboration dataset of the film industry. The ego-network of each

actor/actress is converted to a graph data. Each node represents an actor/actress and each edge

is the indication of two actors/actresses if they appear in the same movie. IMDB-BINARY has

1, 000 graphs associated with 19, 773 edges in total.
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• IMDB-MULTI extends the IMDB-BINARY dataset to a multi-class version. It contains a

balanced set of ego-networks derived from Sci-Fi, Romance, and Comedy genres. Specifically,

there are 1, 500 graphs with 19, 502 edges in total.

Three state-of-the-art representative techniques are implemented as baselines in the experi-

ments.

• Graph Sample and Aggregate (GraphSAGE) [174] is an inductive graph representation

learning approach in either supervised or unsupervised manner. GraphSAGE explores node

and structure information by sampling and aggregating features from the local neighborhood

of each node. A forward propagation algorithm is specifically designed to aggregate the

information together. We evaluate GraphSAGE in its unsupervised setting.

• Graph Matching Network (GMN) [42] utilizes graph neural networks to obtain graph repre-

sentations for graph matching applications. A novel Graph Embedding Network is designed for

better preserving node features and graph structures. In particular, Graph Matching Network is

proposed to directly obtain the similarity score of each pair of graphs. In our implementation,

we utilize the Graph Embedding Networks and deploy the graph-based loss function proposed

in [174] for unsupervised learning fashion.

• Graph Isomorphism Network (GIN) [175] provides a simple yet effective neural network

architecture for graph representation learning. It deploys the sum aggregator to achieve more

comprehensive representations. The original GIN is a supervised learning method. Thus, we

follow the GraphSAGE approach, and modify its objective to fit an unsupervised setting.

Two downstream tasks, classification and clustering, are deployed to evaluate the quality

of the learned graph representations.

For classification task, a simple multi-layer fully connected neural network is built as a

classifier. We report the average accuracy (ACC) for classification performance. For clustering task,

an effective conventional clustering approach, Normalized Cuts (NCut) [193], is used to cluster graph

representations. We consider two widely used metrics for clustering performance, including Accuracy

(ACC) and Normalized Mutual Information (NMI) [194]. ACC comes from classification with the

best mapping, and NMI evaluates the mutual information across the ground truth and the recovered

cluster labels based on a normalization operation. Both ACC and NMI are positive measurements

(i.e., the higher the metric is, the better the performance will be).
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Setting Datasets
Methods SAGE GIN GMN SEED SAGE GIN GMN SEED

Metric Node Feature Excluded Node Feature Included

Clustering

Dezzer
ACC 0.3853 0.4913 0.4924 0.4927 0.3840 0.4930 0.4808 0.4810

NMI 0.0079 0.0958 0.0726 0.1277 0.0003 0.0893 0.0651 0.0566

MUTAG
ACC 0.6649 0.4997 0.4990 0.8014 0.6649 0.4963 0.4910 0.7260

NMI 0.0150 0.0946 0.0825 0.3214 0.0070 0.0933 0.0917 0.1567

NCI1
ACC 0.5098 0.5221 0.5022 0.5510 0.5070 0.5204 0.5005 0.5441

NMI 0.0003 0.0015 0.0034 0.0073 0.0002 0.0013 0.0042 0.0089

PROTEINS
ACC 0.5657 0.5957 0.5966 0.5957 0.5657 0.5957 0.5957 0.5957

NMI 0.0013 0.0038 0.0117 0.0518 0.0004 0.0034 0.0067 0.0689

COLLAB
ACC 0.5208 0.5458 0.5173 0.5973 - - - -

NMI 0.0025 0.0729 0.0193 0.2108 - - - -

IMDB-BINARY
ACC 0.5069 0.6202 0.5010 0.5776 - - - -

NMI 0.0002 0.0459 0.0093 0.0241 - - - -

IMDB-MULTI
ACC 0.3550 3607 0.3348 0.3816 - - - -

NMI 0.0019 0.0185 0.0112 0.0214 - - - -

Classification

Dezzer ACC 0.3775 0.5094 0.5427 0.6327 0.3754 0.5270 0.5627 0.7451

MUTAG ACC 0.6778 0.6778 0.6889 0.8112 0.6889 0.6778 0.6889 0.8222

NCI1 ACC 0.5410 0.5571 0.5123 0.6105 0.5328 0.5231 0.5133 0.6151

PROTEINS ACC 0.6846 0.7387 0.6216 0.7207 0.7027 0.7207 0.6357 0.7462

COLLAB ACC 0.5650 0.6170 0.5460 0.6720 - - - -

IMDB-BINARY ACC 0.5400 0.7310 0.5140 0.7660 - - - -

IMDB-MULTI ACC 0.3866 0.3843 0.3478 0.4466 - - - -

Table 4.1: Evaluating graph representation quality by classification and clustering tasks

4.3.2 Performance Analysis

In this section, we discuss the performance of SEED and its baselines in the downstream

tasks. The performance with and without the node features are reported. In this set of experiments,

SEED adopts identity kernel in the component of embedding distributions.

As shown in Table 4.1, SEED consistently outperforms the baseline methods in both

classification and clustering tasks. For GIN and GMN, supervision information could be crucial in

order to differentiate structural variations. As GraphSAGE mainly focuses on aggregating feature

information from neighbor nodes, it could be difficult for GraphSAGE to extract effective structural

information from an unsupervised manner. In the unsupervised setting, SEED is able to differentiate

structural differences at finer granularity and capture rich attribute information, leading to high-
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quality graph representations with superior performance in downstream tasks. Interestingly, for NCI

and PROTEINS datasets, we see node features bring little improvement in the unsupervised setting.

One possible reason could be that node feature information has high correlation with structural

information in these cases.

Sampling Classification Clustering

Number Accuracy ACC NMI

25 0.6832 0.6649 0.0031

50 0.6778 0.6649 0.0005

100 0.7778 0.6649 0.0537

150 0.7889 0.6968 0.1081

200 0.7778 0.7633 0.2100

300 0.7833 0.7502 0.1995

400 0.8389 0.7628 0.1928

800 0.8111 0.7660 0.1940

Table 4.2: Representation quality with different sampling numbers

Walk Classification Clustering

Length Accuracy ACC NMI

5 0.7278 0.6649 0.0534

10 0.7778 0.7633 0.2100

15 0.8167 0.7723 0.2495

20 0.8778 0.8245 0.3351

25 0.8722 0.8218 0.3380

30 0.8743 0.8285 0.3321

Table 4.3: Representation quality with different walk lengths

4.3.3 Ablation Study

Walk length and sample numbers are two meta-parameters in the SEED framework. By

adjusting these two meta-parameters, we can make trade-off between effectiveness and computational

efficiency. In the experiment, we empirically evaluate the impact of the two meta-parameters on the

MUTAG dataset. In Table 4.2, each row denotes the performance with different sampling numbers
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Figure 4.6: t-SNE visualziation of the MUTAG representations with different sampling numbers
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Figure 4.7: t-SNE visualziation of MUTAG representations with different walk lengths

(from 25 to 800) while the walk length is fixed to 10. Moreover, we adjust the walk length from 5 to

25 while sampling number is fixed to 200 in Table 4.3. We can see that the performance of SEED in

both classification and clustering tasks increases as there are more subgraphs sampled, especially for

the changes from 25 to 200. Meanwhile, we observe the increasing rates diminish dramatically when

sampling number ranges from 200 to 800. Similarly, the performance of SEED increases as the walk

length grows from 5 to 20, and the performance starts to converge when the length goes beyond 20.

Embedding Distribution

We employ t-SNE [2] to visualize learned graph representations in Figure 4.6 and Figure 4.7.

Red and blue colors indicate two labels. We observe that the boundary becomes clearer when sample

number or walk length increases.

Embedding Classification ACC Clustering ACC Clustering NMI

Identity kernel 0.8112 0.8014 0.3214

RBF kernel 0.7958 0.7984 0.3115

Table 4.4: Graph representation quality comparison between identity and RBF kernel on MUTAG
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Figure 4.8: t-SNE visualization of the learned representations from different kernels on MUTAG

Identity kernels or commonly adopted kernels could be deployed in the component of

embedding subgraph distributions. In our implementation, we utilize a multi-layer deep neural

network to approximate a feature mapping function, for kernels whose feature mapping function is

difficult to obtain. Figure 4.8 shows the t-SNE visualization of learned graph representations based

on identity kernel and RBF kernel. As shown in Table 4.4, SEED variants with different kernels for

distribution embedding could distinguish different classes with similar performance on the MUTAG

dataset.

DeepSet

In this section, we investigate whether DeepSet [195] is an effective technique for dis-

tribution embedding. In particular, we employ DeepSet to replace the multi-layer neural network

for feature mapping function approximation, and similarity values generated by MMD serve as

supervision signals to guide DeepSet training. In our experiments, we compare the SEED implemen-

tation based on DeepSet with MMD (DeepSet in Table 4.5) with the SEED implementation based on

the identity kernel (Identity Kernel in Table 4.5). We also observe that the MMD does not have a

significant performance difference. The result confirms that DeepSet could be a strong candidate for

the component of Embedding subgraph distributions.

WEAVE

In this section, we investigate the impact of node features and earliest visit time in WEAVE.

In Table 4.6, Only node feature means only node features in WEAVE are utilized for subgraph

encoding (which is equivalent to vanilla random walks), only earliest visit time means only earliest

visit time information in WEAVE is used for subgraph encoding, and Node feature + earliest visit

time means both information is employed. We evaluate the impact on the MUTAG dataset. As shown
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Dataset

Identity Kernel DeepSet-MMD

Classification Clustering Classification Clustering

ACC ACC NMI ACC ACC NMI

NCI1 0.6105 0.5510 0.0073 0.6382 0.5630 0.0095

PROTEINS 0.7207 0.5957 0.0518 0.7103 0.5965 0.0438

COLLAB 0.6720 0.5973 0.2108 0.6572 0.5668 0.2015

IMDB-BINARY 0.7660 0.5776 0.0241 0.7210 0.5219 0.0225

IMDB-MULTI 0.4466 0.3816 0.0214 0.4258 0.3647 0.0168

Table 4.5: Representation evaluation based on classification and clustering down-stream tasks

Feature utilized Classification ACC Clustering ACC Clustering NMI

Only node feature 0.6444 0.6744 0.0625

Only earliest visit time 0.8112 0.8014 0.3214

Node feature + Earliest visit time 0.8222 0.7260 0.1567

Table 4.6: The impact of node feature and earliest visit time in WEAVE based on MUTAG dataset

above, it is crucial to use both node feature and earliest visit time information in order to achieve the

best performance. Interestingly, on the MUTAG dataset, we observe that clustering could be easier

if we only consider earliest visit time information. On the MUTAG dataset, node features seem to

be noisy for the clustering task. As the clustering task is unsupervised, noisy node features could

negatively impact its performance when both node features and earliest visit time information are

considered.

4.3.4 Nystrom approximation in the SEED framework

The Nystrom method [196] is a fast and efficient technique for obtaining a low-rank

approximation of a large kernel matrix based on a subset of its columns. We tested Nystrom

based algorithm to obtain the Kernel approximation, which is faster than conventional way. We

consider a pure feature based random walk baseline with earliest visit time removed, and evaluate

its performance. Moreover, we present how to leverage Nystrom approximation in embedding

distribution, and its performance is reported

First, we investigate the impact to the effectiveness in the downstream tasks. In this set of
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Figure 4.9: Response time comparison between exact MMD and its Nystrom approximation

Dataset

RBF Kernel SEED-Nystrom

Classification Clustering Classification Clustering

ACC ACC NMI ACC ACC NMI

NCI1 0.6211 0.5610 0.0079 0.6281 0.5518 0.0081

PROTEINS 0.7161 0.5857 0.0476 0.7054 0.5738 0.0389

COLLAB 0.6718 0.5212 0.1831 0.6447 0.5217 0.1983

IMDB-BINARY 0.7421 0.5582 0.0218 0.7280 0.5018 0.0211

IMDB-MULTI 0.4541 0.3985 0.0241 0.4148 0.3676 0.0172

Table 4.7: Representation evaluation based on classification and clustering down-stream tasks

experiments, we implement a baseline named SEED-Nystrom, where the Nystrom method is applied

to approximate RBF kernel based MMD during training phases with 200 sampled WEAVEs. In

particular, top 30 eigenvalues and the corresponding eigenvectors are selected for the approximation.

As shown in Table 4.7, across five datasets, SEED-Nystrom achieves comparable performance,

compared with the case where an identity kernel is adopted.

In addition, we evaluate the response time of the exact RBF kernel based MMD and its

Nystrom approximation. Top 30 eigenvalues and the corresponding eigenvectors are selected for the

Nystrom approximation. As shown in Figure 4.9, when we range the number of WEAVE samples

from 100 to 2000, the Nystrom approximation scales better than the exact MMD evaluation.

In summary, the Nystrom method is a promising method that can further improve the
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scalability of the SEED framework in training phases, especially for the cases where a large number

of WEAVE samples are required.

4.4 Conclusion

In this thesis, we propose a novel framework SEED (Sampling, Encoding, and Embedding

distribution) framework for unsupervised and inductive graph learning. Instead of directly dealing

with the computational challenges raised by graph similarity evaluation, given an input graph, the

SEED framework samples a number of subgraphs whose reconstruction errors could be efficiently

evaluated, encodes the subgraph samples into a collection of subgraph vectors, and employs the

embedding of the subgraph vector distribution as the output vector representation for the input graph.

By theoretical analysis, we demonstrate the close connection between SEED and graph isomorphism.

Our experimental results suggest the SEED framework is effective, and achieves state-of-the-art

predictive performance on public benchmark datasets.
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Conclusion

Correlation learning is an essential, practical, and important research topic for a wide range

of real-world applications such as multi-view learning, multi-label learning, and graph structured

object representation learning. In this thesis, we consider several challenges and applications of

correlation learning including multi-label learning with limited labeled samples, multi-view learning

with heterogeneous feature domains and incomplete views. Moreover, a novel graph representation

learning strategy is proposed to further learn the correlation representations from data.

In chapter 2, we propose an novel Adaptive Graph and Marginalized Augmentation strategy

for multi-label learning. AGMA fully utilizes the distribution information from both feature space

and label space, and adaptively learns the similarity graph. Marginalized augmentation approach is

used to improve the model robustness. The similarity graph, feature-label mapping, and the recovered

labels are jointly optimized to achieve the best performance. In addition, to explore the potential of

deep neural networks, a deep learning based generative correlation discovery network is proposed.

A generative adversarial module is used to generate diverse samples, a label-correlation learning

module is designed to explore the latent correlations across labels, and further improve the multi-label

learning performance.

In chapter 3, we proposed a novel Generative Multi-View Action Recognition (GMVAR)

framework in this paper. A generative mechanism is designed to generate one view conditioned

on the other view. By this way, the comprehensive cross-view motion structure knowledge can be

revealed. Due to this generative strategy, our model works well in single-view and missing-view

scenarios which are difficult for other multi-view approaches. Moreover, we proposed an effective

View Correlation Discovery Network (VCDN) which further explores the cross-view correlation in

high-level label space and obtains more accurate classification results. Evaluation of three multi-view
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action datasets and extensive ablation studies show the effectiveness of both generative model and

VCDN framework.

In chapter 4, we propose a novel framework SEED (Sampling, Encoding, and Embedding

distribution) framework for unsupervised and inductive graph learning. Instead of directly dealing

with the computational challenges raised by graph similarity evaluation, given an input graph, the

SEED framework samples a number of subgraphs whose reconstruction errors could be efficiently

evaluated, encodes the subgraph samples into a collection of subgraph vectors, and employs the

embedding of the subgraph vector distribution as the output vector representation for the input graph.

By theoretical analysis, we demonstrate the close connection between SEED and graph isomorphism.
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random walks,” in Proceedings of the International Conference on Machine Learning, 2018.

[50] G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, and H. Zhang, “Correlative multi-label video annotation,”

in Proceedings of the ACM Multimedia, 2007, pp. 17–26.

[51] N. Ghamrawi and A. McCallum, “Collective multi-label classification,” in Proceedings of the

Conference on Information and Knowledge Management, 2005, pp. 195–200.

[52] Y. Zhang and D. Yeung, “Multilabel relationship learning,” ACM Transactions on Knowledge

Discovery from Data, vol. 7, no. 2, Aug. 2013.

100



BIBLIOGRAPHY

[53] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled classification,” in

Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2004,

pp. 22–30.

[54] H. Yang, J. T. Zhou, and J. Cai, “Improving multi-label learning with missing labels by

structured semantic correlations,” in Proceedings of the European Conference on Computer

Vision. Springer, 2016, pp. 835–851.

[55] L. W. Wang, Z. Ding, Z. Tao, Y. L. Liu, and Y. Fu, “Generative multi-view human action

recognition,” in Proceedings of the IEEE International Conference on Computer Vision, 2019.

[56] Y. Zhang and Z. Zhou, “Multilabel dimensionality reduction via dependence maximization,”

ACM Transactions on Knowledge Discovery from Data, vol. 4, no. 3, 2010.

[57] M. Chen and A. Hauptmann, “Discriminative fields for modeling semantic concepts in video,”

in Large scale semantic access to content, 2007, pp. 151–166.

[58] W. Liu, I. W. Tsang, and K.-R. Müller, “An easy-to-hard learning paradigm for multiple

classes and multiple labels,” Journal of Machine Learning Research, vol. 18, no. 94, pp. 1–38,

2017.

[59] O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning. The MIT Press, 2006.

[60] L. Wang, Z. Ding, and Y. Fu, “Learning transferable subspace for human motion segmentation,”

in Proceedings of the the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[61] L. Wang, Z. D ing, and Y. Fu, “Low-rank transfer human motion segmentation,” IEEE

Transactions on Image Processing, vol. 28, no. 2, pp. 1023–1034, 2018.

[62] J. T. Zhou, H. Zhao, X. Peng, M. Fang, Z. Qin, and R. S. M. Goh, “Transfer hashing: From

shallow to deep,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29,

no. 12, pp. 6191–6201, 2018.

[63] T. Zhou, S. Wang, and J. Bilmes, “Time-consistent self-supervision for semi-supervised

learning,” in Proceedings of the International Conference on Machine Learning, 2020, pp.

11 523–11 533.

[64] Z. Huang, P. Hu, J. T. Zhou, J. Lv, and X. Peng, “Partially view-aligned clustering,” Proceed-

ings of the Advances in Neural Information Processing Systems, vol. 33, 2020.

101



BIBLIOGRAPHY

[65] X. Peng, H. Zhu, J. Feng, C. Shen, H. Zhang, and J. T. Zhou, “Deep clustering with sample-

assignment invariance prior,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 31, no. 11, pp. 4857–4868, 2019.

[66] Z. Zha, T. Mei, J. Wang, Z. Wang, and X. Hua, “Graph-based semi-supervised learning with

multiple labels,” Journal of Visual Communication and Image Representation, vol. 20, no. 2,

pp. 97–103, 2009.

[67] Q. Ma, Y.-Y. Liu, and A. Olshevsky, “Optimal lockdown for pandemic control,” arXiv preprint

arXiv:2010.12923, 2020.

[68] J. Liu, M. Li, W. Ma, Q. Liu, and H. Lu, “An adaptive graph model for automatic image

annotation,” in Proceedings of the ACM International Workshop on Multimedia Information

Retrieval, 2006, pp. 61–70.

[69] F. Nie, S. Yang, R. Zhang, and X. Li, “A general framework for auto-weighted feature selection

via global redundancy minimization,” IEEE Transactions on Image Processing, 2018.

[70] W. Wang, Y. Yan, F. Nie, S. Yan, and N. Sebe, “Flexible manifold learning with optimal graph

for image and video representation,” IEEE Transactions on Image Processing, vol. 27, no. 6,

pp. 2664–2675, 2018.

[71] L. Wang, Z. Ding, and Y. Fu, “Adaptive graph guided embedding for multi-label annotation.”

in Proceedings of the International Joint Conference on Artificial Intelligence, 2018, pp.

2798–2804.

[72] L. Maaten, M. Chen, S. Tyree, and K. Weinberger, “Learning with marginalized corrupted

features,” in Proceedings of the International Conference on Machine Learning, 2013, pp.

410–418.

[73] L. Maaten., M. Chen, S. Tyree, and K. Weinberger, “Marginalizing corrupted features,” arXiv

preprint arXiv:1402.7001, 2014.

[74] M. Chen, K. Weinberger, F. Sha, and Y. Bengio, “Marginalized denoising auto-encoders

for nonlinear representations,” in Proceedings of the International Conference on Machine

Learning, 2014, pp. 1476–1484.

102



BIBLIOGRAPHY

[75] Y. Li, M. Yang, Z. Xu, and Z. Zhang, “Learning with marginalized corrupted features and

labels together.” in Proceedings of the AAAI Conference on Artificial Intelligence, 2016, pp.

1251–1257.

[76] B. Guo, C. Hou, F. Nie, and D. Yi, “Semi-supervised multi-label dimensionality reduction,” in

Proceedings of the IEEE International Conference on Data Mining, 2016, pp. 919–924.

[77] T. X. Elyor Kodirov and S. Gong, “Semantic autoencoder for zero-shot learning,” in Proceed-

ings of the IEEE Computer Vision and Pattern Recognition, July 2017.

[78] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations and

Trends in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[79] R. H. Bartels and G. Stewart, “Solution of the matrix equation AX+XB=C [F4],” ACM

Communications, vol. 15, no. 9, pp. 820–826, 1972.

[80] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2004.

[81] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” in

Proceedings of the ACM Symposium on Theory of Computing, 1987, pp. 1–6.

[82] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for zero-shot

visual object categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 36, no. 3, pp. 453–465, 2014.

[83] F. Briggs, B. Lakshminarayanan, L. Neal, X. Fern, R. Raich, S. Hadley, A. Hadley, and

M. Betts, “New methods for acoustic classification of multiple simultaneous bird species in a

noisy environment,” in Proceedings of the IEEE International Workshop on Machine Learning

for Signal Processing, 2013, pp. 1–8.

[84] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, “Multi-label classification of music

into emotions,” in Proceedings of the ISMIR, 2008, pp. 325–330.

[85] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona, “Caltech-

UCSD Birds 200,” 2010.

[86] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

103



BIBLIOGRAPHY

[87] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “ImageNet: A large-scale hierarchical

image database,” in Proceedings of the IEEE Computer Vision and Pattern Recognition, 2009,

pp. 248–255.

[88] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Computer

Vision and Pattern Recognition, 2015, pp. 1–9.

[89] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, “Zero-shot learning with

semantic output codes,” in Proceedings of the Advances in Neural Information Processing

Systems, 2009, pp. 1410–1418.

[90] M. Chen, A. Zheng, and K. Weinberger, “Fast image tagging,” in Proceedings of the Interna-

tional Conference on Machine Learning, 2013, pp. 1274–1282.

[91] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “TagProp: Discriminative metric

learning in nearest neighbor models for image auto-annotation,” in Proceedings of the IEEE

International Conference on Computer Vision, 2009, pp. 309–316.

[92] W. Liu, D. Xu, I. Tsang, and W. Zhang, “Metric learning for multi-output tasks,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2018.

[93] W. Ge, S. Yang, and Y. Yu, “Multi-evidence filtering and fusion for multi-label classifica-

tion, object detection and semantic segmentation based on weakly supervised learning,” in

Proceedings of the IEEE International Conference on Computer Vision, June 2018.

[94] X. Zhao, H. Li, X. Shen, X. Liang, and Y. Wu, “A modulation module for multi-task learning

with applications in image retrieval,” in Proceedings of the European Conference on Computer

Vision, September 2018.

[95] P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth, “Object recognition as machine

translation: Learning a lexicon for a fixed image vocabulary,” in Proceedings of the European

Conference on Computer Vision, 2002, pp. 97–112.

[96] L. Von Ahn and L. Dabbish, “Labeling images with a computer game,” in Proceedings of the

SIGCHI, 2004, pp. 319–326.

[97] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and

Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

104



BIBLIOGRAPHY

[98] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised learning on large

graphs,” in Proceedings of the International Conference on Computational Learning Theory.

Springer, 2004, pp. 624–638.

[99] Q. Ma, H. Xia, G. Ma, Y. Xia, and C. Wang, “Improved stability and stabilization criteria for

TS fuzzy systems with distributed time-delay,” in Proceedings of the International Conference

on Data Mining and Big Data, 2017, pp. 517–526.

[100] Q. Ma, L. Li, H. Xia, M. Yang, and G. Ma, “New results on stability and stabilization analyses

for TS fuzzy systems with distributed time-delay under imperfect premise matching,” in

Proceedings of the International Conference on Intelligent Control and Information Processing,

2016, pp. 5–10.

[101] B. Wu, F. Jia, W. Liu, B. Ghanem, and S. Lyu, “Multi-label learning with missing labels using

mixed dependency graphs,” International Journal of Computer Vision, pp. 1–22, 2018.

[102] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. Frank Wang, “Multi-label zero-shot learning with

structured knowledge graphs,” in Proceedings of the IEEE Computer Vision and Pattern

Recognition, 2018, pp. 1576–1585.

[103] F. Tai and H.-T. Lin, “Multilabel classification with principal label space transformation,”

Neural Computation, vol. 24, no. 9, pp. 2508–2542, 2012.

[104] S. Chen, Y. Chen, C. Yeh, and Y. F. Wang, “Order-free RNN with visual attention for multi-

label classification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,

no. 1, 2018.

[105] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Proceedings of the Advances in Neural

Information Processing Systems, 2014, pp. 2672–2680.

[106] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative

adversarial networks,” in Proceedings of the IEEE Computer Vision and Pattern Recognition,

2017, pp. 2794–2802.

[107] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized generative adversarial

networks,” arXiv preprint arXiv:1612.02136, 2016.

105



BIBLIOGRAPHY

[108] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in Proceedings of the IEEE Computer Vision and

Pattern Recognition, 2017, pp. 2223–2232.

[109] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[110] Z. Ding, M. Shao, and Y. Fu, “Generative zero-shot learning via low-rank embedded semantic

dictionary,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[111] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier

GANs,” in Proceedings of the International conference on machine learning. PMLR, 2017,

pp. 2642–2651.

[112] Z. Ding, Y. Guo, L. Zhang, and Y. Fu, “One-shot face recognition via generative learning,” in

Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition,

2018, pp. 1–7.

[113] Z. Wang et al., “Image quality assessment: from error visibility to structural similarity,” IEEE

Transactions on Image Processing, 2004.

[114] G.-J. Qi, “Loss-sensitive generative adversarial networks on lipschitz densities,” arXiv preprint

arXiv:1701.06264, 2017.

[115] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” arXiv preprint

arXiv:1812.04202, 2018.

[116] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs

with fast localized spectral filtering,” in Proceedings of the Advances in Neural Information

Processing Systems, 2016, pp. 3844–3852.

[117] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

techniques for training gans,” in Proceedings of the Advances in Neural Information Processing

Systems, 2016, pp. 2234–2242.

[118] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolu-

tional network,” arXiv preprint arXiv:1505.00853, 2015.

106



BIBLIOGRAPHY

[119] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” in Proceedings of the International Conference on Machine Learning,

2015, pp. 448–456.

[120] M. Grubinger, P. Clough, H. Müller, and T. Deselaers, “The IAPR TC-12 benchmark: A

new evaluation resource for visual information systems,” in Proceedings of the International

Workshop OntoImage, 2006.

[121] D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[122] Z. Cheng, L. Qin, Y. Ye, Q. Huang, and Q. Tian, “Human daily action analysis with multi-

view and color-depth data,” in Proceedings of the European Conference on Computer Vision.

Springer, 2012, pp. 52–61.

[123] Z. Cai, L. Wang, X. Peng, and Y. Qiao, “Multi-view super vector for action recognition,” in

Proceedings of the European Conference on Computer Vision, 2014, pp. 596–603.

[124] M. B. Holte, T. B. Moeslund, N. Nikolaidis, and I. Pitas, “3D human action recognition for

multi-view camera systems,” in Proceedings of the IEEE International conference on 3D

imaging, modeling, processing, visualization and transmission, 2011, pp. 342–349.

[125] X. Ji, C. Wang, and Y. Li, “A view-invariant action recognition based on multi-view space

hidden markov models,” International Journal of Humanoid Robotics, vol. 11, no. 01, p.

1450011, 2014.

[126] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Multimedia, vol. 19, no. 2, pp. 4–10,

2012.

[127] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, “Intel realsense stereo-

scopic depth cameras,” in Proceedings of the IEEE International Conference on Computer

Vision Workshop, 2017, pp. 1–10.

[128] R. Horaud, M. Hansard, G. Evangelidis, and C. Ménier, “An overview of depth cameras and

range scanners based on Time-of-Flight technologies,” Machine Vision and Applications,

vol. 27, no. 7, pp. 1005–1020, 2016.

107



BIBLIOGRAPHY

[129] L. Wang, B. Sun, J. Robinson, T. Jing, and Y. Fu, “EV-Action: Electromyography-vision multi-

modal action dataset,” in Proceedings of the IEEE International Conference on Automatic

Face and Gesture Recognition, 2020, pp. 160–167.

[130] D. Pagliari and L. Pinto, “Calibration of Kinect for Xbox one and comparison between the

two generations of microsoft sensors,” Sensors, vol. 15, pp. 27 569–27 589, 10 2015.

[131] R. Azad, M. Asadi-Aghbolaghi, S. Kasaei, and S. Escalera, “Dynamic 3D hand gesture

recognition by learning weighted depth motion maps,” IEEE Transactions on Circuits and

Systems for Video Technology, 2018.

[132] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogunbona, “Action recognition from depth

maps using deep convolutional neural networks,” IEEE Transactions on Human-Machine

Systems, vol. 46, no. 4, pp. 498–509, 2016.

[133] T. Soo Kim and A. Reiter, “Interpretable 3D human action analysis with temporal convolutional

networks,” in Proceedings of the IEEE Computer Vision and Pattern Recognition, 2017, pp.

20–28.

[134] H. Wang and L. Wang, “Modeling temporal dynamics and spatial configurations of actions

using two-stream recurrent neural networks,” in Proceedings of the IEEE Computer Vision

and Pattern Recognition, 2017.

[135] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-

based action recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence,

2018.

[136] N. Bu, M. Okamoto, and T. Tsuji, “A hybrid motion classification approach for EMG-based

human–robot interfaces using Bayesian and neural networks,” IEEE Transactions on Robotics,

vol. 25, no. 3, pp. 502–511, 2009.

[137] F. De la Torre, J. Hodgins, A. Bargteil, and others., “Guide to the carnegie mellon university

multimodal activity (CMU-MMAC) database,” Robotics Institute, p. 135, 2008.

[138] C. Chen, R. Jafari, and N. Kehtarnavaz, “UTD-MHAD: A multimodal dataset for human

action recognition utilizing a depth camera and a wearable inertial sensor,” in Proceedings of

the IEEE International Conference on Image Processing, 2015, pp. 168–172.

108



BIBLIOGRAPHY

[139] D. Wang, W. Ouyang, W. Li, and D. Xu, “Dividing and aggregating network for multi-

view action recognition,” in Proceedings of the European Conference on Computer Vision,

September 2018.

[140] L. Wang, C. Gao, L. Yang, Y. Zhao, W. Zuo, and D. Meng, “PM-GANs: Discriminative

representation learning for action recognition using partial-modalities,” in Proceedings of the

European Conference on Computer Vision, 2018, pp. 384–401.

[141] A. Shahroudy, T.-T. Ng, Y. Gong, and G. Wang, “Deep multimodal feature analysis for

action recognition in RGB-D videos,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 40, no. 5, pp. 1045–1058, 2018.

[142] J. Hoffman, S. Gupta, and T. Darrell, “Learning with side information through modality

hallucination,” in Proceedings of the IEEE Computer Vision and Pattern Recognition, 2016,

pp. 826–834.

[143] L. Tran, X. Liu, J. Zhou, and R. Jin, “Missing modalities imputation via cascaded residual

autoencoder,” in Proceedings of the IEEE Computer Vision and Pattern Recognition, 2017, pp.

1405–1414.

[144] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim, “First-person hand action benchmark

with RGB-D videos and 3D hand pose annotations,” in Proceedings of the IEEE Computer

Vision and Pattern Recognition, 2018, pp. 409–419.

[145] J. Zheng, Z. Jiang, and R. Chellappa, “Cross-view action recognition via transferable dictionary

learning,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2542–2556, 2016.
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