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Abstract

Multi-modal time series classification (MTC) uses comple-

mentary information from different modalities to improve

the learning performance. Obtaining informative modality-

specific representation plays an essential role in MTC. At-

tention mechanism has been widely adopted as an effective

strategy for discovering discriminative cues underlying tem-

poral data. However, most existing MTC methods only uti-

lize attention to balance the feature weights within or cross

modalities but ignore digging latent patterns from mutual-

support information in attention space. Specifically, the

attention distributions are different for multiple modalities

which are supportive and instructional with each other. To

this end, we propose a collaborative attention mechanism

(CAM) for MTC based on a novel perspective to utilize

attention module. CAM detects the attention differences

among multi-modal time series, and adaptively integrates

different attention information to benefit each other. We

extend the long short-term memory (LSTM) to a Mutual-

Aid RNN (MAR) for multi-modal collaboration. CAM takes

advantages of modality-specific attention to guide another

modality and discover potential information which is hard

to be explored by itself. It paves a novel way of employing

attention to enhance the capacity of multi-modal represen-

tations. Extensive experiments on four multi-modal time

series datasets illustrate the CAM effectiveness to improve

the single-modal and also boost multi-modal performances.

1 Introduction

Multi-model time series classification (MTC) has drawn
more attention since the increasing usage of multi-
modal sensors to improve classification performance
in several data mining applications [3, 24]. Further,
several algorithms are designed to explore multi-modal
time series analysis [22, 1]. However, MTC is still
a challenging task due to the difficulties: (1) how to
represent modality-specific information, especially for
temporal data with dynamic patterns; (2) how to utilize
them for achieving better multi-modal performance.
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Figure 1: Illustration of the differences among multi-
ple modalities in the attention space. We take a “kick-
ing” motion sample with RGB and depth modalities
as an example. RGB modality easily captures visible
color changes between frames, and the depth modality
is more sensitive to the changes in depth distance. In
RGB, the visible changes are obvious during the lifting
leg and drawing back the leg. However, in the middle
of example sequence, the changes of RGB are tiny and
hard to be discovered, whereas the depth modality il-
lustrates significant changes during this period, because
the changes are mainly in depth dimension when the leg
is at the top position.

Subspace learning is widely used to seek a com-
mon subspace for multiple modalities [8, 9]. It aims to
find consistent characteristics among multi-modal and
derive robust representations. However, emphasizing
the synchronous patterns may overlook the distinctive
information of each modality. Besides, fusion mech-
anism is another popular way for multi-modal learn-
ing [18, 23]. Utilizing effective fusion takes advantage of
the distinctive information from each modality and com-
bine them for encouraging higher performance. How-
ever, some straightforward fusion methods (e.g., aver-
age, concatenation, and summation) may not fully ex-
ploit multi-modal data and hurt the final result. On the
one hand, early fusion methods pay more attention on
augmenting the capacity of each modality by borrowing
information from the other modalities [23]. They inte-
grate the multi-modal information in feature space. On
the other hand, late fusion algorithms explore distinc-
tive modality-specific decision in label space [17]. The
mutual-support information across modalities are uti-
lized by wisely fusing the predicted scores. Assisted by
attention modules, some well-designed learnable weights
are assigned to each modality individually [4] or cross-
modal learning [7]. However, for both early and late
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Figure 2: Illustration of our CAM framework. The Modality-Specific Attention is the first-stage. Two LSTM
encoders make modality-specific classification, respectively. The attention score zt of two modalities are fed into
the second stage. Mutual-Aid RNN achieves the multi-modal collaboration in the second stage. Mutual-Aid block
(MAt) collaborates the multiple modalities step-by-step in temporal dimension. After multi-modal collaboration,
we deploy an attention module for each modality and make a late fusion for multi-modal result.

fusion strategies, most existing attention-enhanced ap-
proaches benefit multi-modal learning only by exploit-
ing the readily available information directly. For exam-
ple, the late fusion uses attention to balance predicted
scores from each modality for final decision. Similarly,
the early fusion constructs a common feature space pro-
jected from different original modality-specific feature
spaces adjusted by learnable attention weights. Al-
though the attention module is used in different rep-
resentation spaces, both of them utilize weighted sum-
mation to coordinate the contribution from each single
modality. They ignore that how to excavate latent in-
formation from the attention distributions of different
modalities, which can be seen as a guidance informa-
tion to benefit multi-modal learning.

To discover the latent cues from attention distribu-
tions across multiple modalities, we propose a Collabo-
rative Attention Mechanism (CAM) model for MTC as
shown in Fig. 2. Attention effectively enhances the rep-
resentation learning accompanied with the capacity of
interpreting model and providing intuitions of data. In-
spired by the interpretability of temporal attentions, we
instantiate CAM based on the observations from multi-
modal time series: different modalities have different
attention distributions (see Fig. 1). Specifically, taking
human motion data as an example, the RGB modality
pays attention to certain video frames; the depth modal-
ity values more contributions from some other frames.
Each modality has its own concentrations, yet ignoring
the frames that are hard to explored by itself. However,
the ignored time steps reserving valuable patterns also
deserves to be investigated. To disclose the overlooked
information, we propose a Mutual-Aid RNN (MAR)
cell to collaboratively guide multi-modal representation
learning. Specifically, one modality utilizes the atten-
tion differences and selectively directs the other modal-
ity to focus on certain temporal steps containing obscure

information. In this way, the previous overlooked tem-
poral steps of one modality can be revisited helped from
the other modality and its extracted feature will be en-
hanced. Please note that these clues are still from the
modality itself instead of borrowing from other modal-
ity, but discovered based on guidance from the other
modality. Leveraging on this mechanism, single-modal
performance is improved and the multi-modal perfor-
mance is also boosted. Different from conventionally
using attention to adjust fusion for multi-modal data,
we fully exploit the multi-modal attention distributions
to achieve multi-modal collaboration. It is motivated by
the interpretability of attention and naturally developed
to expand a new way to analyze multi-modal data. To
the best of our knowledge, we are the first to go deeply
into the attention differences and explore multi-modal
time series analysis from this novel perspective. We
summarize our contribution as below:

• We propose a collaborative attention mechanism
(CAM) framework to improve the multi-modal
time series classification (MTC) performance. It
effectively utilizes the attention information across
different modalities to mutually enhance multi-
modal learning, which boosts the single-modal and
multi-modal performance simultaneously.

• A novel Mutual-Aid RNN (MAR) cell is proposed
for multi-modal time series. It relies on attention
distribution to capture the latent patterns and
adaptively enhance the temporal representation of
each modality.

• We provide a new perspective to reacquaint multi-
modal learning by leveraging the interpretability
of attention mechanism to guide learning process.
Extensive experiments on four multi-modal time
series datasets illustrate the effectiveness of the
proposed CAM.
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2 Methodology

Let X1 ∈ RT×d1

and X2 ∈ RT×d2

are multi-modal fea-
ture inputs. T represents the length of time series. d1

and d2 are feature dimensions of two modalities. Y ∈
RC is the one-hot label vector, where C is the number
of classes. The first phase contains modality-specific en-
coders and classifiers. We use LSTM with self-attention
to encode the sequence input and obtain the attention
information. The training is supervised by the label
information. In the second phase, our CAM utilizes
the modality-specific attention distributions from the
first phase to achieve the multi-modal collaboration pro-
cess. In this way, the modality-specific representation
is enhanced to obtain higher single-modal performance.
After that, we use a correlative late fusion to obtain
multi-modal result which is boosted by the enhanced
single-modal representations.

2.1 Attention for Time Series Given an time
series sample and the corresponding label, the temporal
attention model aims to encode the sequential input and
optimize the following objective:

(2.1) θ∗ = argmax
θ

∑
(X,y)

log p(y|X;θ),

where θ is the set of parameters of model. X =
{x1, ...,xt} is the multiple steps of one time series sam-
ple, and y is the corresponding label. The dynamic
information is the key factor for classification. Thus,
wisely choosing temporal encoder is decisive for tem-
poral feature extraction. In our work, we deploy long
short-term memory (LSTM) [6] to model sequential
data. Each input step xt is encoded as a hidden rep-
resentation ht, and the cell state ct is updated corre-
spondingly. The LSTM update processes are given by

(2.2)

ft = σg(Wfxt + Ufht−1 + bf ),

it = σg(Wixt + Uiht−1 + bi),

ot = σg(Woxt + Uoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ σc(Wcht + Ucht−1 + bc),

ht = ot ◦ σh(ct),

where ft, it, ot, ct, and ht represent forget gate, input
gate, output gate, cell state, and hidden state at time t,
respectively. ct−1 and ht−1 are cell and hidden states
at time t− 1. σg, σc, and σh are activation functions. ◦
represents the element-wise product. W , U , and b are
learnable parameters.

Original temporal sequence X is encoded as H =
{h1, ...,hT }. Commonly, we pick the last hidden state

hT to represent the whole sequence. However, it may
lose temporal information to some degree. A reasonable
way is using the weighted summation of ht. The weights
are calculated based on the importance of each temporal
step by attention mechanism. Here, we adopt a self-
attention variant [21] which is proposed for document
classification. It can be easily utilized for modeling
temporal data and given by

(2.3)

ut = tanh(Wwht + bw),

zt =
exp(uT

t uw)∑
t exp(u

T
t uw)

,

r =
∑
t

ztht,

where ut denotes the attention vector derived from
ht. Ww and bw are learnable parameters. uw is the
context vector, which is random initialized and updated
through the optimization procedure. It depicts the
global meaning of the temporal sequence itself. zt
means the degree of importance for each ut among the
whole temporal context uw by using softmax activation.
r is the weighted summation of ht.

To introduce our CAM clearly, we go deeper to
provide more insights about LSTM. The key factor
of LSTM cell is the ct. It reflects memory states
of the whole sequence. ft and it update the ct
internally through the forget and input procedures.
The contents of forget/input are derived from current
input xt and last hidden state ht−1. The content of
current hidden state ht is also extracted from xt/ht−1,
then filtered by ct. All information flows cross several
control gates center on the ct. As the memory state,
ct only records the temporal dynamic characteristic
instead of specific domain knowledge. To this end, we
conclude that fully exploiting the cell state ct is decisive
for informative temporal encoding. We introduce our
framework starting from the temporal attention and cell
state ct.

2.2 Modality-Specific Attention Multi-modal
time series contain mutual-support information for each
other, however, each modality has its own distinctive
patterns. To fully exploit the distinctive information
from each modality, we utilize the modality-specific
attention as follows:

(2.4)

Hv = Ev(Xv, φvE),

rv = Qv(Hv, φvQ),

Ŷ v
a = Cv(rv, φvC),

where superscript v represents the modality v. E is
LSTM module (Eq. 2.2), encoding sequence X into hid-
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Figure 3: Illustration of the proposed Mutual-Aid RNN
(MAR) cell. xt and ht−1 of two modalities are set
as input to integrate information. They collaboratively
update the ct of two modalities, respectively. Atten-
tion distributions zt of two modalities are involved in
weighted summation to adaptively integrate the multi-
modal knowledge.

den sequence H. Q is the attention module (Eq. 2.3),
transferring H into weighted summation vector r. C
is the modality-specific linear classifier, resulting in the
predicted label Ŷa. φvE , φvQ, and φvC are learnable pa-
rameters. They are optimized using following objective:

(2.5) Lv
a = `(Y, Ŷ v

a ),

where ` represents cross-entropy loss, Y is the ground
truth. The goal of modality-specific attention aims to
derive the Zv = {zv1 , ...,zvT } which is the intermediate
product of Eq. 2.3 and preserves the modality-specific
dynamic patterns. We regard the modality-specific at-
tention as our first stage model. Multi-modal attention
distributions Zv are reserved for the second stage.

2.3 Multi-Modal Collaboration by Mutual-Aid
RNN To substantially take advantage of multi-modal
data, in our second stage, we propose the multi-modal
collaboration mechanism which is achieved by the well-
designed Mutual-Aid Rnn (MAR) cell. It mutually sup-
ports each single-modal representation in multi-modal
scenario. Note that unlike some data augmentation
strategies cross multi-modal (e.g., representation map-
ping, feature fusion, and generative model), our goal is
referring to attention information of the other modal-
ity to help the target modality discovering more clues
by itself, instead of transferring or fusing information
from others directly. To convey our insight clearly, we
elaborate it as follow: Modality-specific attention pro-

vides the distinctive temporal patterns by attention dis-
tributions. It is extracted through optimizing single-
modal classifier individually and reflects the modality-
specific characteristics. Particularly, for the same tem-
poral sample, the attention distribution of one modality
focuses on certain time steps. On the other hand, that
of the other modality focuses on different steps. This is
caused by the inherent attribute of each modality. For
example, in human motion temporal data, RGB modal-
ity could easily capture the color changes to recognize
human motion and depth may be more sensitive to the
distance variations. As a result, the effective temporal
steps for two modalities could be different. However,
the differences are not opposite but complementary for
each other. Some steps are ignored by certain modality,
due to its inherent attribute, still restore valuable infor-
mation. This information may be easily discovered by
the other modality. To this end, we propose the multi-
modal collaboration mechanism. It encourages multi-
modal data to help with each other by guiding other
modality to focus on implicit but effective information
by itself. We first encode the multi-modal temporal se-
quenceXv with LSTM (Eq. 2.2) abbreviated as follows:

(2.6)
ct = ft ◦ ct−1 + it ◦ σc(Wcht + Ucht−1 + bc),

ht = ot ◦ σh(ct),

where ct and ht are the cell state and hidden state
for time t, deriving information from ct−1, ht−1, and
xt, respectively. We extend the LSTM to our proposed
MAR by designing a novel recurrent cell (see Fig. 3).
Instead of setting the ct as the cell state for next
time step directly, MAR guides the target modality to
dig more latent information by leveraging the temporal
dynamic characteristic from the other modality. Next,
we formulate our proposed MAR step-by-step.

Cross-Modal Collaborator is proposed to inte-
grate multi-modal information and prepared for follow-
ing collaborative learning. It is formulated as follows:

(2.7)
Gr→d = σ(Wrdx

r
t +Wdh

d
t−1),

Gd→r = σ(Wdrx
d
t +Wrh

r
t−1),

where W∗ is learnable parameters. G∗ extract infor-
mation from current input x∗t and collaborate with last
hidden state h∗t−1 from the other modality. σ repre-
sents the sigmoid activation. The knowledge of each
time step from the other modality is reserved in G∗.

Mutual Filtering is designed based on cross-
modal collaborator above. Cell state c∗t contains tem-
poral dynamic patterns for each modality. It could
be updated internally in LSTM (Eq. 2.6). However,
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c∗t will only contain the memory information from sin-
gle modality and cannot take advantage of temporal
patterns of the other modality. Mutual filtering helps
model update the c∗t using cross-modal collaborator to
derive knowledge from the other one, which is given by

(2.8)
crt
′ = Gd→r ◦ crt ,

cdt
′

= Gr→d ◦ cdt ,

where ◦ is the point-wise product. c∗′t are the enhanced
cell states containing mutual-support temporal informa-
tion from the other modality.

Mutual Collaboration is finally achieved by com-
bining the attention distributions and two proposed
modules above. Attention distributions z∗t reflect the
importance of each time step for each single-modality.
Further, it also decides the information importance dur-
ing updating c∗t in multi-modal collaborative learning.
We first normalize the attention scores by

(2.9)

zrt
′ =

zrt
zrt + zdt

,

zdt
′

=
zdt

zrt + zdt
.

The original cell state c∗t are updated by single-modal
information, while c∗′t are updated by the cross-modal
collaborator G∗. z

∗′
t represent the importance of dy-

namic knowledge from different modalities. We in-
tegrate the multi-modal information for updating cell
states via the weighted summation:

(2.10)
crt
′′ = zrt

′crt + zdt
′
crt
′,

cdt
′′

= zdt
′
cdt + zrt

′cdt
′
,

where c∗′′t are the final cell states containing the dy-
namic knowledge from multi-modal data. Through be-
ing the inputs for next time step, they bring the knowl-
edge from the other modality to overcome the inherent
drawback of each single modality. In this way, some
implicit information could be discovered by each single
modality via the guidance from mutual collaboration.

So far, we have introduced the proposed multi-
modal collaboration via our MAR cell. Its input and
output are multi-modal time series samples and sequen-
tial representations, respectively. In order to fully utilize
the discovered information via our collaboration mecha-
nism, we reuse the self-attention (Eq. 2.3) to obtain the
final representation and make the modality-specific clas-
sification again similar to Eq. 2.4. We briefly formulate

these steps by

(2.11)

Hv
M = Ev

M (Xv, φvEM
),

rvM = Qv
M (Hv

M , φvQM
),

Ŷ v
M = Cv

M (rvM , φvM ),

where all the terms with subscript M represents the
similar meanings with Eq. 2.4 under our multi-modal
collaboration mechanism. We obtain another attention
distribution ZvM and the predicted label Ŷ v

M for multi-
modal results. The learnable parameters are optimized
by minimizing following loss:

(2.12) Lv
M = `(Y, Ŷ v

M ).

The modality-specific attention (first stage) and the
multi-modal collaboration (second stage) constitute our
whole framework Collaborative Attention Mechanism
(CAM). It exploits the knowledge from multi-modal at-
tention distributions to guide the multi-modal informa-
tion discovering and enhance the learning process. More
implicit but valuable patterns could be discovered for
performance boosting. After obtaining the Ŷ v

M from
each single modality, we use a correlative late fusion to
evaluate final multi-modal performance.

2.4 Correlative Late Fusion Our CAM discovers
more clues to enhance the single-modal representation.
We deploy a correlative late fusion [17] for multi-modal
evaluation, which is given by

(2.13) D = Ŷ r
M · Ŷ d>

M ,

where Ŷ r
M ∈ Rdl×1 and Ŷ d>

M ∈ R1×dl

are the predicted

label from multiple modalities. D ∈ Rdl×dl

is the
correlative matrix constructed by the multiplication
of multi-modal predicted labels. D is flatten into a
dl × dl dimension vector as input of the final classifier

Cf : Rdl×dl → Rdl

. Cf is parameterized by φCf and
updated by minimizing following loss:

(2.14) Lf = `(Y,Cf (D,φCf )),

where Y is the ground truth, ` is the cross-entropy loss.
Lf represents the final multi-modal loss.

As a summary, our model consists of the modality-
specific attention and the multi-modal collaboration,
followed by a late fusion model for multi-modal learning
performance. The modality-specific attention aims to
capture the differences among multiple modalities, es-
pecially focusing on the attention distribution. These
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differences are leveraged as guidance information for
multi-modal collaboration. A novel MAR cell is pro-
posed for extracting cross-modal knowledge and updat-
ing memory cell effectively. A concise late fusion is de-
ployed to evaluate multi-modal performance. More im-
plicit yet valuable information could be discovered by
each single modality to enhance the modality-specific
representation, thus to improve both single-modal and
multi-modal performances.

3 Experiments

3.1 Multi-Modal Time Series Datasets Four
datasets are used for evaluation: EV-Action [19] is a
novel large-scale multi-modal human motion dataset. It
contains 20 common human actions. We use the first 53
subjects with RGB and depth modalities for our exper-
iments. Each subject performs each action 5 times and
we have 5300 samples in total. We choose the first 40
subjects as training set and the rest 13 subjects as test
set. NTU RGB+D (NTU) [16] is a popular large-
scale multi-modal action dataset. It contains 56000 ac-
tion clips in 60 action classes performed by 40 subjects.
We use RGB and depth modalities in our evaluation.
We use the cross-subject evaluation strategy in the orig-
inal dataset paper, which contains 40320 samples for
training and 16560 samples for test. UWA3D Multi-
modal Activity II (UWA3D II) [14, 15] contains 30
human actions performed by 10 subjects. We use RGB
and depth recorded from front for evaluation. There
are totally 270 samples and we randomly choose 150 for
training and 120 for test. Depth-included Human
Action Dataset (DHA) [11] is a multi-modal dataset
with RGB and depth modalities. It contains 23 classes
performed by 21 subjects. There are 483 samples in to-
tal. We randomly choose 240 samples for training and
the rest 243 samples for test.

3.2 Comparison Methods We use seven methods
for comparisons (first five are for EV-Action and NTU,
and the last four for UWA3D II and DHA). MLSTM-
FCN [10] is a novel deep framework proposed for han-
dling multivariate temporal data. It contains a two-
pathway structure (CNN and LSTM) to encode tem-
poral data. Comprehensive patterns are captured for
classification. RC Classifier [2] proposes a reservoir
computing (RC) approach to model temporal data as
vectorial representations in an unsupervised fashion.
MFN [23] designs a memory fusion mechanism for
multi-modal learning based on temporal data. It pro-
poses an early fusion strategy to integrate multi-modal
information in the feature space and improve the multi-
modal performance. GMVAR [18] utilizes the gen-
erative strategy to mutually augment the multi-modal

representations. It boosts the multi-modal learning per-
formance significantly and improves the model robust-
ness simultaneously. TSN [20] is an effective bench-
mark model for temporal action data. It utilizes an ef-
ficient sampling method and a two-stream structure to
effectively collect valuable patterns and achieve promis-
ing performance. AMGL [13] is a novel multi-modal
classification method based on graph learning. It aims
to optimize weights for each graph automatically in a
parameter-free fashion. MLAN [12] proposes an adap-
tive graph-based algorithm. It achieves the local struc-
ture and semi-supervised learning at the same time for
multi-modal learning.

3.3 Implementation We use the same strategy to
preprocess the raw data for four datasets. Specifically,
we use TSN [20] to extract features for RGB modality
using the BNInception network as backbone. Each RGB
frame is extracted into 1024 dimension feature vector.
The depth is transferred into RGB format first using
HHA encoding algorithm [5]. Then, we use the exactly
the same TSN framework to extract depth features. We
arrange the length of samples with a unified number for
each dataset via the cutting and repeating strategies.
Concretely, for longer samples, we pick the first certain
time steps and cut the rest off; for shorter samples, we
repeat the whole temporal sequence several times until
it reaches the target number. We set the lengths as 60,
60, 60, and 40 for EV-Action, NTU, UWA3D II, and
DHA, respectively.

We concatenate the multi-modal data in feature di-
mension to conduct the MLSTM-FCN and RC classifier
methods. The MFN and GMVAR are for multi-modal
learning which fit our input data appropriately. TSN is
conducted for each single-modal individually. We adopt
the AMGL and MLAN to fit our multi-modal temporal
classification setting and make evaluation.

As shown on Fig. 2, the modality-specific attention
is first trained individually. The input is multi-modal
time series data. The attention distributions Zv are
derived through optimizing Eq. 2.5 during first-stage
model. Next, the same input data is set as input for the
multi-modal collaboration (second-stage) with Zv from
the first-stage. The MAR model is conducted with the
additional input Zv. Single-modal results from MAR
model are fed into the final late fusion model to obtain
the multi-modal performance. We set 128 batch size
for EV-Action and NTU, and 32 for DHA and UWA3D
II datasets. The hidden dimensions for both temporal
encoders (first and second stages) and attention are
128. The learning rates are 0.0005 and 0.001 for first-
stage and second-stage. Our model is implemented by
PyTorch with GPU acceleration.
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Figure 4: Visualization results of confusion matrices on EV-Action dataset.

Datasets Methods RGB Depth Fusion

EV-Action

TSN [20] 0.6855 0.6723 -
RC Classifier [2] 0.5992 0.5790 0.6213
MFN [23] 0.5743 0.4082 0.6423
MLSTM-FCN [10] 0.6804 0.6926 0.7014
GMVAR [18] 0.6792 0.6739 0.7088
CAM (ours) 0.7022 0.7123 0.7359

NTU

TSN [20] 0.7517 0.7691 -
RC Classifier [2] 0.7683 0.8014 0.8258
MFN [23] 0.7089 0.8062 0.8125
MLSTM-FCN [10] 0.7662 0.7941 0.8217
GMVAR [18] 0.7545 0.7702 0.8018
CAM (ours) 0.7720 0.8134 0.8408

DHA

TSN [20] 0.6785 0.8324 -
AMGL [13] 0.6461 0.7284 0.7489
MLAN [12] 0.6791 0.7296 0.7613
GMVAR [18] 0.6972 0.8348 0.8872
CAM (ours) 0.7407 0.8642 0.8724

UWA3D II

TSN [20] 0.4833 0.5936 -
AMGL [13] 0.3067 0.3667 0.3933
MLAN [12] 0.2933 0.2867 0.3800
GMVAR [18] 0.4917 0.5846 0.6035
CAM (ours) 0.5083 0.6073 0.6314

Table 1: Single-modal and multi-modal evaluation on
four multi-modal time series datasets.

3.4 Performance Analysis The classification per-
formances of four datasets are shown in Table 1. For
EV-Action and NTU datasets, our method outperforms
all other approaches on both single-modal and multi-
modal scenarios. MLSTM-FCN is an effective model
for single-modal temporal data which achieves compet-
itive results. However, the fusion result is lower than
ours. More importantly, our single-modal performances
are also higher than MLSTM-FCN which demonstrates
our MAR model works well to discover more valuable
information for each single modality. GMVAR is an-
other competitive multi-modal temporal data classifica-
tion algorithm based on a generative model. However, it
suffers from the difficulties of training generative model
and cannot obtain promising performance on these two
large-scale datasets. Our CAM obtains the highest clas-

Datasets Method RGB Depth Fusion

EV-Action

LSTM (baseline) 0.6878 0.6772 -
CAM w/o MAR 0.6894 0.6796 0.7154
CAM w/o RGB 0.6978 0.6802 0.7285
CAM w/o Depth 0.6874 0.7084 0.7255
CAM (ours) 0.7022 0.7123 0.7359

NTU

LSTM (baseline) 0.7393 0.7974 -
CAM w/o MAR 0.7401 0.7986 0.8262
CAM w/o RGB 0.7425 0.8115 0.8342
CAM w/o Depth 0.7680 0.8059 0.8316
CAM (ours) 0.7720 0.8134 0.8408

Table 2: Ablation Study on EV-Action and NTU.

sification performances for both single-modal and multi-
modal evaluation. For DHA and UWA3D II datasets,
GMVAR achieves better performances on these two
small-scale datasets. Its generative strategy improves
the multi-modal learning performance and model ro-
bustness. However, our method still generally outper-
forms it especially on single-modal scenario. We visu-
alize the confusion matrices on EV-Action dataset us-
ing the single-modal results before/after our collabora-
tive (first-stage/second-stage) and the multi-modal fu-
sion result in Fig. 4.

3.5 Ablation Study We provide a detailed ablation
study on the EV-Action and NTU datasets to prove
the necessity of each model component. The results
are shown in Table 2. Particularly, we compare with
four ablated models as follows: 1) LSTM (baseline) in-
dicates single-modal performance without multi-modal
collaboration learning and late fusion. 2) CAM w/o MAR

means we train the multi-modal data synchronously
and add late fusion without collaborative learning us-
ing the MAR cell. 3) CAM w/o Depth and 4) CAM w/o

RGB denote we only deploy collaboration learning to up-
date the cell state of each single modality individually.
We conclude deploying collaborative learning on each
single-modal enhances the representations and improves
the performance correspondingly. Our complete model
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Figure 5: The colorbars represent the attention distribution scores of Zv and Zv
M (before/after multi-modal

collaboration). The dash boxes indicate the temporal locations and show its corresponding frames. Green
indicates frames originally attended by single modality itself. Red represents frames being attended after our
collaborative learning. Yellow means frames attended by both two modalities.
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Figure 6: Visualization of attention score changes for
two modalities. Each column represents one sample.
X-axis/Y-axis are the time step and score values.

deploys the multi-modal collaboration to achieve high
performance on each single modality. Further the late
fusion leverages the enhanced single-modal representa-
tions and obtains the best multi-modal performance.

3.6 Attention Visualization We visualize and
compare the changes between the Zv and ZvM , which
are the temporal attention distributions (scores) before
and after our multi-modal collaboration. It illustrates
the collaborative learning process and provides the intu-
ition about our model insight. Fig. 6 shows three sam-
ples from EV-Action dataset with different collaborative
learning cases. Each column represents one sample. In

(a), each modality captures specific attention patterns
and guides the other modality correspondingly. In (b),
depth exerts an influence on RGB, while RGB has little
impact on depth. In (c), two modalities roughly pay
attention to the same location, however, they still ad-
just their attention scores in a small-scale through the
collaborative learning process.

Further, we provide more details of sample (a) with
corresponding frames in Fig. 5. The colorbars in the
middle are the temporal attention scores of Zv and
Zv
M . Being lighter means higher value. The green

dash boxes indicate the frames have been noticed by
each single modality itself. The red boxes represent the
frames gained attention after our collaborative learning,
which is hard to be discovered by single modality itself.
The yellow boxes denote the frames noticed by both
two modalities simultaneously. In this case, the action
class is “throwing a ball”. The process of hands up
and hands down are easily captured by RGB. However,
the throwing when hands at the highest point is easily
noticed by depth due to its motion changes in depth
direction. The collaborative learning process takes
advantages of characteristics of each modality to guide
the other modality obtaining more implicit patterns and
enhancing the learned representations.

4 Conclusions

In this paper, we propose a Collaborative Attention
Mechanism (CAM) for the multi-modal time series clas-
sification (MTC). A modality-specific attention is first
utilized for capturing multi-modal attention distribu-
tions. Then, the multi-modal collaboration is achieved
with the proposed Mutual-Aid RNN (MAR) cell. In this
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way, each modality is guided by the knowledge from the
other modalities and enhanced to discover more latent
information by itself. The proposed CAM provides a
novel perspective to leverage the attention mechanism
for exploring multi-modal temporal learning. The in-
terpretability of attention is appropriately exploited to
guide the learning process. Taking advantage of the
collaboration strategy, the proposed CAM outperforms
state-of-the-art methods on four public multi-modal
time series datasets in both single and multi-modal sce-
narios. A detailed ablation study is also provided to
validate the effectiveness of each model component.
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