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Abstract
Despite great progress in supervised image recognition, a
large performance drop is usually observed when deploying
the model in the wild. Unsupervised domain adaptation
(UDA) methods tackle the issue by aligning the source
domain and the target domain. However, most existing
adversarial based methods attempt to perform the alignment
from a holistic view, ignoring the underlying class-level data
structure in the target domain. As a result, the representations
are distorted by adversarial alignment, leading to a negative
transfer. Motivated by this issue, we first claim that this
issue can be solved if there exists ’optimal’ per-sample
weights for adversarial alignment, and then devise a meta-
learning framework to adaptively learn such adversarial
weights. Specifically, we construct a meta-dataset with target-
like distribution as meta knowledge, and use it to guide
the learning of the optimal adversarial weights via a meta-
learner. By this means, our framework can adaptively adjust
the weights of all training samples in adversarial training
based on the feedback from meta dataset and thus achieve the
categorical-wise domain alignment. We conduct sufficient
ablation studies and experiments to show the effectiveness of
our approach. Our method is generic to existing domain
alignment based methods and could achieve consistently
improvements over three UDA classification benchmarks.

Keywords: Domain Adaptation, Adversarial Learning, Trans-
fer Learning, Semi-supervised Learning

1 Introduction
The success of deep neural networks in recent years is
mostly driven by a large amount of accessible labeled data.
However, it is usually labor-intensive work to collect massive
densely annotated data. To address this issue, unsupervised
domain adaption (UDA) alleviates the dependency on large-
scale labeled training datasets by transferring knowledge
from relevant source domains with rich labeled data, e.g
synthetic data via computer graphics technology. However, a
performance drop is observed when the model trained with
source domain data is applied to target domain data due to
distribution discrepancy between source and target domain.
This phenomenon is known as the domain shift problem,
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Figure 1: Examples from Office-31 [17] dataset for unsupervised
domain adaptation (UDA). For training, labeled source data (Ama-
zon) and unlabeled target data (Webcam) are used. For testing, only
target data is evaluated. The source and target domain data share the
same label space. The goal of UDA is to reduce the domain shift
problem to learn a model that generalizes well on target data.

which poses a challenge to UDA as shown in Figure 1.
There are two directions on UDA for closing the discrep-

ancy gap via aligning the feature distributions of the source
and the target domain. One direction of UDA focuses on
directly applying semi-supervised learning (SSL) techniques
on UDA problems [28, 8] by considering target domain as
the unlabeled data in SSL. Recently, pseudo-labeling-based
(PL) methods [25] have been widely adopted from SSL and
achieved state-of-the-art performance on UDA tasks. A typ-
ical way of PL is to generate pseudo-labels corresponding
to the largest prediction probability of target samples and
retrain the network on them in an iterative and supervised
manner. However, as the network is biased towards source
labeled data, the pseudo labels unavoidably contain noises.
Retraining on those noisy supervision would propagate errors.

Another direction is to learn domain-invariant represen-
tations by alignment-based methods. Among them, adversar-
ial alignment [20, 12] has been known as one of the most
popular methods which reduce the discrepancy between two
domains by training a domain-invariant feature extractor. The
key idea is to play a two-player minimax game between a
feature extractor and domain discriminator. Specifically, the
domain discriminator is optimized to distinguish the samples
from source and target domain while the feature extractor is
trained to fool the domain discriminator. Though tremendous
progress has been made in adversarial domain adaptation, the
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major limitation is that it can only align the feature distribu-
tions globally without considering categorical information.
As a result, the adversarial alignment would distort the dis-
criminative structures of the original representations, leading
to a negative transfer (aligning samples of two domains but
different class together).

Many subsequent works [27, 2] try to address this
issue by introducing their newly designed regularization.
Specifically, [2] adds batch spectral regularization to suppress
the top singular values such that eigenvectors with smaller
singular values can also carry discriminability information.
[27] proposes a asymmetric adversarial mechanism with a
new domain classifier as regularization. [12] incorporates
class prediction with feature to learn the domain discriminator
and design an entropy-based weighting strategy to align the
samples in a easy-to-hard manner.

Following the spirit of [12] in terms of sample weighting,
we claim that the feature distortion issue caused by adversarial
learning can be solved if there are ”ideal” per-sample weights
existed for adversarial alignment. Importantly, the ’ideal’
adversarial weights should have following properties: 1) it
will assign large weights to those poorly-aligned samples and
small or even zero weights to those well-aligned samples. 2)
For those poorly-aligned samples, the value of weight should
be adaptively adjusted such that they can be aligned to the
correct semantic class. However, none of existing methods
can estimate such ’ideal’ adversarial weights.

In this paper, we devise a Meta-learning framework
to adaptively learn such ideal adversarial weights with the
guidance from meta knowledge. The main idea is to build up a
meta-dataset with target distribution as meta knowledge, and
leverage it to guide the learning of a meta-leaner which takes
each sample as input and outputs its estimated adversarial
weights. Intuitionally, the meta-learner can be connected
with original model in the sense that, if adversarial weights
generated by the meta-learner are optimal, then the model
trained with such weights for domain alignment should have
low risk on the meta dataset. Formally, we formulate this
problem in a bi-level optimization manner: 1) the meta-
learner is iteratively optimized by the meta data to output
the optimal adversarial weights. 2) the model is optimized
by training data with the estimated optimal adversarial
weights from the meta-learner for better domain alignment.
Additionally, as target data does not have labels in UDA
problems, we create our meta dataset with clean target-like
distribution by mixing up source samples with high-quality
pseudo-labeled target samples of the same class. This meta
dataset can provide the meta-knowledge to the meta-learner
for the better estimation of adversarial weights.

We summarize our contributions as follows:

• Motivated by the limitations of adversarial learning
in terms of representation distortion, we propose a
Meta-learning framework to solve the issue by learning

“optimal” per-sample weights for adversarial alignment
in UDA classification task. To our best knowledge,
we conduct the first attempt to model a learnable per-
sample weight for adversarial alignment and solve it in
a learning-to-learn manner.

• To learn the optimal adversarial weights, we construct
a meta dataset with target-like distribution as meta-
knowledge, and use it to guide the learning of a meta-
leaner which takes training samples as input and outputs
their adversarial weights. The meta-learner and model
are connected in a bi-level optimization manner.

• We conduct extensive experiments and ablation studies
to thoroughly verify the effectiveness of our proposed
Meta Adversarial Weight. Furthermore, our method is
generic and can be plugged into various domain align-
ment based UDA methods to boost their performance.

2 Related Work
2.1 Discrepancy-based domain adaptation Many works
focus on extracting domain-invariant feature representations.
Some previous works suggest different metrics to measure
domain discrepancy explicitly and promote the feature align-
ment by minimizing these measure like MMD [21]. With
the popularity of Generative Adversarial Network, a trend of
adversarial domain adaptation is rising [5, 12]. Specifically,
adversarial training based methods involve a domain discrim-
inator as an implicit way to measure domain discrepancy and
domain adaptation is achieved by encouraging the network
to confuse the well-trained discriminator to generate domain-
invariant features. However, adversarial alignment without
proper regularization would distort the feature representa-
tions. Several previous methods try to solve this issue with
their designed regularization loss. Specifically, [2] adds batch
spectral penalization to suppress the top singular values such
that eigenvectors with smaller singular values can also carry
discriminability information. [18] uses a contrastive loss to
achieve instance-level transfer for better discriminability.

In this paper, we solve the representation distortion from
a new perspective by estimating the optimal per-sample
weights for adversarial alignment in a learning-to-learn
manner.

2.2 Pseudo-labeling in Domain Adaptation Inspired by
cluster assumption, pseudo-labeling can realize the class-
wise alignment across domains. Specifically, it iteratively
generates pseudo-labels for the target samples with high
prediction probability and retrain the network based on those
pseudo-labels along with labeled source data. This technique
has been widely employed for UDA on classification [25] and
semantic segmentation [31] tasks. However, pseudo-labeling
methods do not have a theoretical guarantee for reducing
domain discrepancy and usually suffer from noisy target
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pseudo labels which would mislead the network training.
In this paper, we combines the merits of adversarial

learning and pseudo-labeling in the sensen that our method
could not only minimize the domain discrepancy across
domains with theoretical guarantee, but also maintains the
discriminative structures by our proposed meta adversarial
weights.

2.3 Meta-learning in DA Meta-Learning (learning to
learn) has experienced a recent resurgence in few-shots learn-
ing (e.g MAML[4]). The goal of MAML is to learn a good
network initialization for unseen few-shot tasks by training on
several different tasks. Following the spirits of MAML, meta-
learning is introduced in transfer learning setting by Li et al.
[10, 9] to solve domain generalization, multi-source DA, and
semi-supervised DA setting. Specifically, they split the dif-
ferent domains of labeled training set into meta-train set and
met-test set, and optimize the network in a two-stage meta-
learning manner for a better initialization. [23] first introduce
meta-learning into the UDA setting. Instead of splitting the
training set into two stages, they use domain alignment loss
in meta-training stage while classification loss in meta-testing
stage such that two objectives can be optimized in a more
coordinated way for better representation.

In this paper, thought our method is also based on meta-
learning, our motivation, meta-optimization design, and goal
are substantially different. To specify, our method is moti-
vated by the representations distortion issue of adversarial
learning, and propose to solve it by estimating the optimal
adversarial weights via meta-learning. Our meta objective
does not directly optimize the representations but aims at
estimating a better adversarial weights.

2.4 Sample Weighting methods Our method is also re-
lated to sample weighting methods. In noisy label learning,
Ren et al. [16] introduced learning to re-weight scheme for as-
signing the low weights for the noisy samples. [19] improves
the stability of [16] by using an additional meta-learner for
sample weighting.

In comparison, our method is substantially different
from [16, 19] in terms of task, and meta-dataset construction
and meta-learner design. Specifically, we re-weights the
adversarial alignment to prevent features distortion while they
re-weights the classification loss for noisy labels. Further, as
there is no validation set in UDA setting, we construct a meta
dataset with target-like distribution by mix-up augmentation
while they directly use a held-out clean validation set. Our
meta-learner takes both feature and prediction as input and
generate adversarial weights while their meta-learner takes
training loss as a scalar input.

3 Preliminary
3.1 Problem Definition In unsupervised domain adapta-
tion (UDA) problem, we are given a source domain Ds =
{(xsi ,ysi )|

Ns
i=1} of Ns labeled source examples and a target

domain Dt = {(xti)|
Nt
i=1} of Nt unlabeled target examples.

Note that source and target domain share the same label
space. The joint distributions of source and target domain
are not identically and independently distributed, specifically
P (xs,ys) 6= Q(xt,yt). The objective of UDA is to train a
deep neural network G(·|θ) on labeled source data (xsi ,y

s
i )

drawn from Ds and unlabeled target data xti drawn from Dt
such that the model G(·|θ) can generalize well on target do-
main. In details, network G(·|θ) = C ◦ F (·|θ) is comprised
of a feature extractor F (·|θ) and a classifier C(·|θ) where θ
denotes network parameters.

In general, training a network G(·|θ) on source domain
only leads to sub-optimal performance as the domain gap
issue is unsolved. The source supervised objective function
is in the form of:

(3.1) Ls(F,C) =
1

Ns

Ns∑
i=1

Lce (C(F (xsi |θ)),ysi ) .

As the consequence, domain alignment methods are incorpo-
rated with Eq. 3.1 to mitigate the domain shift problem.

3.2 Adversarial Domain Adaptation Adversarial domain
alignment methods, derived from Domain adversarial neural
network (DANN) [5], have been arguably one of the most
effective approaches to reduce the domain shift problem in
UDA. The key idea of DANN is to learn transferable feature
space by playing a two-player minimax game between a
feature extractor F (·|θ) and an newly introduced domain
discriminator D(·|θ). Specifically, the domain discriminator
D(·|θ) is optimized to distinguish the samples from source
and target domain while the feature extractor F (·|θ) is
trained to fool the domain discriminator D(·|θ). By these
means, the feature extractor F (·|θ) can learn a transferable
representation across domains. Jointly training the F (·|θ)
with the category classifier C(·|θ) on labeled source data, a
discriminative representation f = F (·|θ) could be obtained
across categories. Formally, the optimization process of
DANN is formulated as follows:

(3.2) min
F,C

max
D
Ls(F,C)− λLadv(F,D),

(3.3)

Ladv(F,D) =
wsi
Ns

Ns∑
i=1

logD(fsi )+

wtj
Nt

Nt∑
j=1

log[1−D(f tj )],
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where λ is a trade-off hyperparameter, fsi and f ti are the
features, and wsi , wtj are the per-sample weights for source
sample i and target sample j respectively. In DANN, wsi and
wtj are set as one for all samples.

3.3 Conditional Adversarial Domain Adaptation As
the joint distributions of two domains are different
P (xs,ys) 6= Q(xt,yt), only adapting the feature representa-
tion f without considering categorical structure is not enough.
Specifically, there is a failure mode in DANN. When the fea-
tures from two domains but different classes are aligned to-
gether, the discriminator is confused but categorical alignment
is mismatched. To insert the discriminative class strucutres
into the adversarial alignment, conditional adversarial domain
adaptation (CDAN) is proposed to adapt both feature repre-
sentation f = F (·|θ) and class prediction g = C(·|θ) with a
joint representation h = (f , g). In this sense, the Eq. 3.3 can
be extended as follows:

(3.4)

Lcadv(F,D) =
wsi
Ns

Ns∑
i=1

logD(fsi , g
s
i )+

wtj
Nt

Nt∑
j=1

log[1−D(f tj , g
t
j)].

As a result, the adversarial learning can incorporate class
structures into the domain alignment for better generalization.

4 Limitations of Adversarial Domain Adaptation
Existing domain adaptation methods are based on a theory
proposed by [1]. Formally, letH denote the hypothesis space
and h ∈ H denote the classifier, we can formulate the upper
bound of target generalization error εt as:

εt(h) ≤ εs(h) +
1

2
dH∆H(S, T ) + λ∗,∀h ∈ H,(4.5)

where εs(h) is the source generalization error of h,
dH∆H(S, T ) is the H∆H-distance which measures the di-
vergence between the source and target feature distributions,
and λ∗ = εs(h

∗) + εt(h
∗) denotes the error of an ideal joint

hypothesis h∗ on source and target domains.

4.1 Error of ideal joint hypothesis In adversarial do-
main adaptation,H∆H-distance is minimized by learning a
domain-invariant representation while εs(h) is minimized by
training the classifier with labeled source samples. Previous
adversarial methods generally assume that λ∗ is small, but it is
not the case according to the analysis from [11]. Specifically,
to compute λ∗, they first fixed the feature representations
learned by: ResNet-50 [6] and DANN [5] where ResNet-50
denotes the method training with Eq. 3.1 only. Then, they
trained a new ideal classifier over the fixed representations

with labeled source data and labeled target data, and obtain
the errors λ∗ on source and target domain. As a consequence,
λ∗ of DANN is substantially worse than the λ∗ of ResNet-50,
indicating that the adversarial alignment would distort the
discriminative structures of the original representations.

4.2 Importance of class prediction in CDAN we found
that the effectiveness of CDAN is largely correlated with the
correctness of class prediction g according to our preliminary
experiment. Specifically, when the class prediction g in
Eq. 3.4 is 100 % correct with respect to ground truth, the
classification accuracy on target data would achieve 100 %
as well on Office-31 [17] dataset. Inversely, if the class
predictions g of target samples are incorrect, CDAN would
wrongly align the source and target samples of different
category together, leading to a negative transfer.

5 Method
Motivated by the limitations of existing adversarial alignment
methods above, we propose a meta-learning framework to
learn a per-sample weight for adversarial alignment such that
discriminative representations can be preserved, and name
it as meta adversarial weight (MAW). In this section, 1) we
first explain why estimating ideal per-sample weights helps
adversarial domain adaptation from representations distortion,
and then formulate the ideal weights estimation problem in
a learning-to-learn manner via a meta-leaner. 2) Next, we
introduce how we build up the meta-dataset with target-like
distribution without access to target labels, and use it as meta
knowledge to guide the search for the optimal per-sample
weights. 3) Last, we illustrate bi-level meta-optimization
procedure for updating a meta-learner to estimate the optimal
adversarial weights.

5.1 Meta Adversarial Weight for Domain Alignment
For existing adversarial domain adaptation, all source and
target samples are equally involved in adversarial alignment.
As a result, it might distort the original discriminative
representations. To specify, training with labeled source
domain only in Eq. 3.1 could already align a portion of
target samples to their semantic counterpart in source domain.
However, adding adversarial alignment for those well-aligned
target samples might push them from the correct class into
an incorrect one, leading to a negative transfer. Additionally,
the value of weight λ in Eq. 3.2 also plays an important
role in balancing the discriminativeness and transferability.
If the weight is too large, adversarial alignment would take
over the whole training and overlook the goal of learning
discriminative representations.

We claim that the aforementioned issues can be solved
if there are ideal per-sample weights existed for adversarial
alignment, and they should have two properties as follows:
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• After training with Eq. 3.1, only those poorly-aligned
target samples are assigned the weights for adversarial
alignment while those already well-aligned target sam-
ples would have very small or zero weights.

• For those poorly-aligned target samples, the value of
adversarial weights can be adaptively adjusted such that
those samples can be aligned to their correct classes.

The key challenge is how to estimate the per-sample
adversarial weights such that they have such two properties.
Instead of heuristically choosing the weights by conditional
entropy [12] or disagreement of two classifiers [14], we devise
a Meta-learning framework to adaptively learn the adversarial
weights under the guidance of meta knowledge.

The main idea is to build up a meta-dataset with target
distribution Dm = {(xmi ,ymi )|Nm

i=1} as meta knowledge, and
use it to guide the learning of a meta-learner M(·|φ) which
estimates the optimal adversarial weights. Specifically, the
meta-learner M(·|φ) takes the feature and class prediction of
a sample as input and output a adversarial weight for the
sample in the form of wi = M(fi, gi|φ). We can link
our original model G(·|θ) with the meta-learner M(·|φ)
in a bi-level optimization manner. The intuition is that
if the adversarial weights generated by the meta-learner
M(·|φ) are optimal, then a model G(·|θ) trained with such
weights for domain alignment should have low risk on the
meta dataset Dm. Formally, the optimal adversarial weights
estimation via the meta-learner M(·|φ) can be formulated as
the following bi-level optimization problem,

min
φ

Ei∈Dm
Lce(x

m
i , y

m
i ; θ∗(φ)) with(5.6)

θ∗(φ)← arg min
θ

Ei∈Ds,t
Ls − λLadv(xsi , xti; θ,φ),(5.7)

where Eq. 5.7 is extended from Eq. 3.2 except that the
adversarial weights for samples in Eq. 3.3 are estimated by
the meta-learner wi = M(fi, gi|φ) instead of setting to one.
We term this framework as Meta Adversarial Weight (MAW).
Meta-leaner Architecture: M(·|φ) takes feature and class
prediction of a sample as input by concatenation and feed
it into a two-layer neural network with dimensions of (C +
xdim, hdim), (hdim,C) respectively whereC is the number
of classes, xdim is the dimension of feature and hdim is the
dimension of hidden units. ReLU is used between layers
as the activation function and output is with the Sigmoid
function to guarantee the weight located between [0, 1].

5.2 Meta-dataset Construction

5.2.1 Dilemma in UDA The typical pipeline of machine
learning has a validation set which shares the same data distri-
bution with testing set and can be served for hyperparameters
selection. However, this pipeline is controversial to UDA
setting where no validation set is available and testing set

(target domain data) does not have labels to involve network
training. Therefore, it is an open problem to obtain the clean
target-like distribution data for model selection.

5.2.2 Creating clean target-like distribution As there
are no labels for target data, we apply the widely-used pseudo-
labeling strategy on target samples to obtain high-quality
pseudo labels by setting a predefined threshold. The pseudo
labels of target samples are selected only when the following
criterion is meet:

(5.8) ỹti = 1[max(C(F (xti|θ))) > τ ],

where 1 is an indicator function and τ is a pre-defined
threshold value (empirically setting to 0.9).

As pseudo labels are not 100% clean, we leverage mix-
up augmentation strategy [24] to create virtual samples by
mixing up the source domain samples Ds = {(xsi ,ysi )|

Ns
i=1}

and selected pseudo labeled target domain samples D̃t =

{(xti, ỹti)|
Ñt
i=1}. Specifically, we randomly sample a pair of

source sample (xsi ,y
s
i ) and target samples (xti, ỹ

t
i) of same

class and mix them up to obtain the meta sample (xmi ,y
m
i )

as follows:

(5.9)
xmi = αxsi + (1− α)xti,

ymi = ysi ,

where α follows a uniform distribution U(0, 1).
Consequently, we can build up such a meta-dataset

Dm = {(xmi ,ymi )|Nm
i=1} with target-like distribution by

incorporating high-quality pseudo-labeled target samples
while maintaining the cleanness by mixing with labeled
source samples. Our method use this meta-dataset Dm as
meta knowledge to guide the learning of the meta-learner for
estimating the optimal adversarial weights.
Discussion. It is worth noting that there are some substantial
differences between our method and either pseudo-labeling
[31] or mix-up [24]. Functionally, pseudo-labeling or mix-
up are generally used for model training and help to learn a
smooth and discriminative decision boundary. In comparison,
our meta dataset is not involved in model training but
served as meta-knowledge to estimate the optimal adversarial
weights via meta-leaner. Conceptually, we could consider
our meta dataset as a validation set in machine learning to
select the per-sample weights as a bunch of hyperparameters.
In our case, per-sample weights can be estimated in a learning-
to-learn manner during training. Algorithmically, unlike
mix-up which mixes up two random samples, our meta-
dataset mixes up two randomly sampled source examples and
pseudo-labeled target examples of same class. The purpose is
to ensure that the meta-sample is target-like while maintaining
a certain degree of label cleanness. Future work, image-to-
image translation method [7] can also help create clean target
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distribution data by translating the source data with target
style. As it will introduce extra computational cost, we leave
it as future work.

5.3 Meta-Optimization for MAW To illustrate the bi-
level meta-optimization in Eq. 5.6 and Eq. 5.7, we introduce
three steps to perform one iteration of optimization for model
G(·|θ) and meta-learner M(·|φ).
Pseudo Model Update: At each iteration t, we uniformly
sample a batch Bs from source data Ds, a batch Bt from
target data Dt and feed them into the model G(·|θ) to update
the model parameters θ.

θ∗(φt)← θt − η
∂Ei∈Ds,tLs(x

s
i , y

s
i ; θ)− λLadv(x

s
i , x

t
i; θ

t,φt)

∂θt

(5.10)

This step is considered as the pseudo update for model
as θ∗ can be rolled back to previous iteration t if a better
meta-learner φ is obtained.
Meta-Update on Meta-leaner: We sample a batchBm from
meta dataset Dm via Eq. 5.9. Then we feed the meta batch
Bm into the model θ∗ that obtained in the previous step to
update the parameters of meta-learner M(·|φ):

φt+1 ← φt − β ∂Ei∈DmLce(x
m
i , y

m
i ; θ∗(φt))

∂φt
(5.11)

As a result, the updated meta-learner φt+1 should be
better than the previous updated one φt, in the sense that it
results in smaller classification errors on the meta dataset by
estimating more optimal adversarial weights.
Real Model Update: We apply the obtained new meta-
learner φt+1 to conduct the real model update given the
same training batches from Eqn. 5.10:

θt+1 ← θt − η
∂Ei∈Ds,tLs(x

s
i , y

s
i ; θ)− λLadv(x

s
i , x

t
i; θ

t,φt+1)

∂θt

(5.12)

As summarize in Alg. 1, we pursue the ideal adversarial
weights generated by the optimal meta-leaner φ for Eqn 5.12
in terms of minimizing the loss on meta dataset in Eqn 5.11.

Algorithm 1 Optimization for Meta Adversarial Weight
Input: source dataset Ds, unlabeled target dataset Dt
Build up meta-dataset at Eq. 5.9
for t = 1, 2, · · · , tall do

1: Sample two batch Bs, Bt from Ds, Dt respectively
2: Pseudo Model Update θ∗(φt) at Eq. 5.10
3: Sample a meta-batch Bm from Dm
4: Meta-Update on Meta-learner φt+1 at Eq. 5.11
5: Real Model Update θt+1 at Eqn. 5.12

end

6 Experiment
6.1 Datasets We conduct experiments on three domain
adaptation classification benchmarks: Office-31 [17], Office-
Home [22] and ImageCLEF-DA. Office-31 is a commonly
used dataset for unsupervised domain adaptation. It includes
4652 images of 31 classes from three domains: Amazon
(A), Webcam (W) and DSLR (D). ImageCLEF-DA consists
of 12 common classes shared by three public datasets
(domains): Caltech-256 (C), ImageNet ILSVRC 2012 (I), and
Pascal VOC 2012 (P). Office-Home is a more challenging
benchmark than Office-31. It consists of images of everyday
objects organized into four domains: artistic images (Ar), clip
art (Cl), product images (Pr), and real-world images (Rw). It
contains 15,500 images of 65 classes.

6.2 Implementation details We follow the standard proto-
col of UDA( [5, 26]) to use all labeled source samples and
all unlabeled target samples as training data. The reported
testing results are the average accuracy over three random
repeats with center-crop images. We adopt ResNet-50 [6] on
Office-31, ImageCLEF-DA and Office-Home dataset, fine-
tuned from the ImageNet pre-trained model. We use Pytorch
as implementation framework. We adopt Stochastic Gradi-
ent Descent (SGD) optimizer with learning rate of 1× 10−3,
weight decay 5 × 10−4, momentum 0.9 and batch size 32.
For optimization, we first pre-train the model based on source
data only in Eqn 3.1. Then, we train our MAW framework
based on the three steps optmization in Eq 5.10, Eq 5.11 and
Eq 5.12. The threshold value τ for high-quality pseudo la-
bel is fixed as τ = 0.90 and the trade-off hyperparameter in
Eq.3.2 is set to λ = 0.2 for all datasets. Note that the results
of existing methods in Table 1, 2, 3 refer to their respective
papers.

6.3 Comparison with State-of-the-Arts In this section,
we select several state-of-the-art methods in UDA such
as DMRL [24], MDD [29], BNM [3], SymNets [30] and
AADA [27]. Further, we also compare our methods with
other regularizers that are designed for improving adversarial
alignment to a state-of-the-art performance, such as BSP [11],
MetaAlign [23] and ILA-DA [18].

6.3.1 Results on Office-31 Results based on ResNet-50
are shown in Table 1. 1) Our method can be served as a
plugged in module to boost DANN [5] and CDAN [12] by
a significant margin. 2) Compared to other regularizers for
adversarial DA such as BSP[11], MetaAlign [23] and ILA-
DA [18], our method shows the consistent improvements over
them on different DA methods. 3) Comparing to the general
state-of-the-art methods such as SAFN [26], DMRL [24],
MDD [29], our method outperforms it substantially by 1.1%.

https://www.imageclef.org/2014/adaptation

Copyright © 20XX by SIAM
Unauthorized reproduction of this article is prohibited



Table 1: Experiment results on Office-31 classification using ResNet-50. Best(bold), second best (underline).
Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [6] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
ADDA [20] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN [13] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
MRENT [32] 88.0±0.4 98.6±0.1 100.0±0.0 87.4±0.8 72.7±0.2 71.0±0.4 86.4
SAFN [26] 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1
DMRL [24] 90.8±0.3 99.0±0.2 100.0±0.0 93.4±0.5 73.0±0.3 71.2±0.3 87.9
MDD [29] 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
DANN [5] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
+ BSP [11] 93.0±0.2 98.0±0.2 100.0±0.0 90.0±0.4 71.9±0.3 73.0±0.3 87.7

+ MetaAlign [23] 93.9±0.4 98.7±0.2 100.0±0. 91.6±0.3 73.7±0.2 74.1±0.2 88.7
+MAW (ours) 92.8 ±0.1 98.6±0.0 100.0 ±0.0 92.6 ±0.2 75.9 ±0.1 76.3±0.2 89.4

CDAN[12] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
+ BSP [11] 93.3±0.2 98.2±0.2 100.0±0.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5

+ILA-DA [18] 95.7±0.0 99.2±0.0 100.0±0.0 93.3 ±0.0 72.1±0.0 75.4±0.0 89.3
+MAW (ours) 94.2±0.2 98.7±0.1 100.0±0.0 94.4±0.3 76.5±0.2 75.8±0.4 90.0

Table 2: Experiment results on Office-Home for unsupervised domain adaptation (ResNet-50). Best(bold), second best (underline).
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [6] 34.9 50 58 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
AADA [27] 54.0 71.3 77.5 60.8 70.8 71.2 59.1 51.8 76.9 71.0 57.4 81.8 67.0

SymNets [30] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2
SAFN [26] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
BNM [3] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

MDD [29] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
DANN [5] 45.6 59.3 70.1 47 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

+MetaAlign [23] 48.6 69.5 76.0 58.1 65.7 68.3 54.9 44.4 75.3 68.5 50.8 80.1 63.3
+BSP [11] 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9

+MAW (ours) 52.6 72.4 78.4 61.1 72.2 72.4 59.4 52.2 79.0 73.5 58.7 82.8 67.8
CDAN [12] 49.0 69.3 74.5 54.4 66 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
+BSP [11] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

+MetaAlign [23] 55.2 70.5 77.6 61.5 70.0 70.0 58.7 55.7 78.5 73.3 61.0 81.7 67.8
+ MAW (ours) 55.9 72.8 78.8 62.2 72.5 73.5 60.4 53.2 80.2 74.2 59.4 83.6 68.9

6.3.2 Results on Office-Home Result based on ResNet-
50 are reported in Table 2. Similarly conclusion can
be drawn that MAW shows consistent improvements on
different adversarial methods such as DANN and CDAN,
and outperforms other state-of-the-art regularizers such as
BSP[11], MetaAlign[23] and ILA-DA[18].

6.3.3 Results on ImageCLEF-DA Results based on
ResNet-50 are shown in Table 3. Comparing to state-of-
the-art adversarial methods DMRL [24] and AADA[27], our
MAW improves DANN to 88.8 % and improves CDAN to
89.5 % accuracy, and outperforming other adversarial meth-
ods by a substantial margin.

6.4 Analysis

6.4.1 Feature visualization We visualize the target feature
embeddings of (a) source model, (b) DANN and (c) DANN
+ MAW on Office-31 W→ A via t-SNE ([15]) in Fig.2 (a-c).
We can qualitatively observe that DANN + MAW could learn
more discriminative target features than DANN.

(a)  Source Only (b)  DANN (c) DANN + MAW

(d) Hyper-parameter Sensitivity (e)  Convergence Analysis (f) Meta Adversarial weights

Figure 2: Analysis: (a-c) The t-SNE visualization of target feature
(red) on Office-31 W → A. (d) Hyperparameter sensitivity on
Confidence threshold on Office-31 A→W. (e) Convergence analysis
w.r.t Test error on Office-31 A → W. (f) Visualization on Meta
adversarial weights on Office-31.

6.4.2 Hyper-parameter sensitivity on Confidence
Threshold We conduct the hyper-parameter sensitivity
analysis on the the threshold value τ for selecting pseudo
label in Eqn. 5.8 on Office31 A→ W. As Fig.2 (d) shows,
our method is robust to confidence threshold while it is

Copyright © 20XX by SIAM
Unauthorized reproduction of this article is prohibited



Table 3: Experiment results on ImageCLEF-DA classification using ResNet-50
Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50[6] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN[5] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
CDAN[12] 76.7 90.6 97.0 90.5 74.5 93.5 87.1
SAFN[26] 78.0 91.7 96.2 91.1 77.0 94.7 88.1
DMRL[24] 77.3 90.7 97.4 91.8 76.0 94.8 88.0
AADA[27] 79.2 92.5 96.2 91.4 76.1 94.7 88.4

DANN + MAW 79.5 91.5 96.3 92.1 77.9 95.6 88.8
CDAN + MAW 79.7 92.6 96.9 92.8 78.6 96.1 89.5

recommended to choose τ around 0.9. If τ is too high, the
meta dataset will only have limited amount of samples such
that it fails to capture the target distribution. If τ is too small,
meta set would contain too many noisy target samples.

6.4.3 Convergence Comparison In order to validate
whether our method can guide the existing adversarial method
towards class-wise alignment, we quantitatively visualize
the change of entropy and test error with respect to training
epochs for three candidates method. From Fig. 2(e), we ob-
serve similar trend for entropy and test error in the sense that
our MAW could converge much faster than DANN thanks to
the guidance from unbiased task risk estimator.

6.4.4 Visualization on Meta Adversarial Weight To ver-
ify whether the learned adversarial weights match our hypoth-
esis, we first evaluate the source only model on target domain
on Office-31 dataset. We denote the correctly classified target
samples as ”Well-aligned” samples while wrongly classified
target samples as ”Poorly-aligned” samples. After training
with our MAW framework, we use meta-learner to generate
the weights for all target samples, and take an average of the
weights for the ”Well-aligned” and ”Poorly-aligned” samples
respectively on A→W and W→ A task. We found that our
meta-learner would assign small weights to the ”Well-aligned”
samples while large weights to the ”Poorly-aligned” samples.
It demonstrates that our learned meta adversarial weights
follow the first property of ’ideal’ adversarial weights.

6.4.5 Ablation Study To differentiate our MAW with
pseudo-labeling (PL) and mix-up methods, we conduct
ablation studies by jointly training DANN with either PL
or mix-up in a naive way. From table 4, our DANN + MAW
achieves the best performance at 89.4 % and outperforms
either PL or mix-up by a significant margin. We claim that
our MAW could better achieve the categorical adversarial
alignment with the guidance from our meta-learned weights
compared to those naive jointly training.

7 Conclusion and Future work
In this work, we devise a meta-learning framework to adap-
tively learn optimal adversarial weights to help the feature
distortion issue from adversarial alignment. Specifically, we
construct a meta-dataset with target-like distribution as meta

Table 4: Ablation studies using Office-31 based on ResNet-50.
Please refer to Section 6.4.5 on what each component represents.

Method Avg

DANN 82.2
+PL 84.7

+Mixup 87.4
+ MAW 89.4

knowledge, and use it to guide the learning of the optimal
adversarial weights via a meta-learner. By this means, our
framework can adaptively adjust the weights of all training
samples in adversarial training based on the feedback from
meta dataset and thus achieve the categorical-wise domain
alignment.

For future work, 1) we could use image-to-image trans-
lation method to construct the meta dataset with target dis-
tribution. 2) Besides estimating the adversarial weights, we
could also leverage the meta knowledge to correct the class
predictions of target samples such that it could benefit both
conditional adversarial DA and pseudo labeling methods.
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