

Correlation Discovery for Multi-view and Multi-label Learning

Lichen Wang

Department of Electrical & Computer Engineering College of Engineering Northeastern University

About Me

Lichen Wang

- Fifth year PhD Candidate in Northeastern University
- Supervisor: Professor Yun Raymond Fu

Education:

- Ph.D., Computer Engineer, Northeastern University, USA, 2016 present
- M.S., Electronic and Information, Xi'an Jiaotong University, China, 2013 2016
- B.S., Control Engineering, Harbin Institute of Technology, China, 2009 2013 **Research Topics:**
- Correlation Discovery
 - Multi-label learning and multi-view learning
 - Semi-supervised learning
 - Human action recognition
 - Graph representation learning

What is correlation?

Interactions/connections across different instances

- Social Network
 - Friends connections
 - Like/unlike comments
 - Fake account
- Human action/interaction
 - Interactions of different objects
 - Intension prediction
- Time-series data
 - Latent correlations in time space
- Scene understanding
 - Relations of different objects

Bank account transaction

Image/scene understanding

Social Network

Why correlation is important?

Correlation exists in a wide-range of

real-world tasks

- Multi-view learning
- Multi-label learning
- Image/scene understanding
- Image captioning
- Time-series/action recognition

Correlation provides a unique and comprehensive view across instances

Multi-label Learning [1]

Time series data analysis [3]

Multi-view Learning [2]

Image Captioning

[1] Wang, Lichen, et al. "Generative correlation discovery network for multi-label learning." ICDM 2019

[2] Wang, Lichen, et al. "EV-Action: Electromyography-Vision Multi-Modal Action Dataset." arXiv preprint arXiv:1904.12602 (2019)

[3] Wang, Lichen, et al. "Learning transferable subspace for human motion segmentation." AAAI 2018

Challenges

Correlations are hard to define

- Instance-instance correlations
- Label-label correlations (e.g., *wet* = *moist?*)
- View-correlations (e.g., RGB & depth)
- Visual-semantic correlation

No sufficient training samples

- Correlations are task specific
- Correlations are subjective and hard to define
- Difficult to obtain consistent supervision label

How to efficiently utilize the correlations?

• Sensitive to parameters and data characteristic

Correlation is hard to define and utilize

Research works

Research works

Multi-label Learning

Motivation

• One object can be described by tens or hundreds of labels. Multi-label learning corresponds to seek a mapping from the feature space to the label space.

Setting

- Input: a single instance
- Output: multiple label prediction

Multi-label learning seeks a mapping from the feature space to the label space.

Subjective labels are hard to obtain

consistent label results

Multi-label Learning

Challenges

- Long-tail label distribution
 - Some labels are extremely common (e.g., *man-made* and *outdoor light*)
 - Some labels are very rare

(e.g., *fair* and *fighting*)

- Subjective Label candidates
 - Inconsistent labeling results
 - High-level label noise
- Complicated label correlations
 - e.g., Dry-Moist, Dry-Blue Sky

Long-tail label distribution in SUN [1] dataset.

Complicated and latent label correlations

Synergetic Media Learning Lab

Number

8,089

73

106,012

Label

Man-made

Fire

(Total)

Man-made

Related methods:

• Attention-based methods

[1] Huynh, Dat, and Ehsan Elhamifar. "A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning." CVPR'20.[2] Guo, Hao, et al. "Visual attention consistency under image transforms for multi-label image classification." CVPR'19.

• Label-image or label-label correlations

[1] Huynh, Dat, and Ehsan Elhamifar. "Interactive Multi-Label CNN Learning with Partial Labels." CVPR'20[2] Zhang, Min-Ling, and Kun Zhang. "Multi-label learning by exploiting label dependency." KDD'10.

• Semi-supervised scenario

[1] Zhan, Wang, and Min-Ling Zhang. "Inductive semi-supervised multi-label learning with co-training." KDD'17.
[2] Tan, Qiaoyu, et al. "Semi-supervised multi-label classification using incomplete label information." Neurocomputing'17.
[3] Guo, Baolin, et al. "Semi-supervised multi-label dimensionality reduction." ICDM'16.

My research works

Generative Module

• Generate and diversify the training samples

Framework of our correlation discovery network for multi-label prediction

Generative Correlation Discovery Network

Correlation Discovery Network

• $C_{\rm M}(.)$ obtains initial (low-accurate) results first, then $C_{CDN}(.)$ further utilizes the available prediction to "*tune*" the result to high-accurate..

$$L_{C_M} = \mu \|Y - C_M(X)\|_{\rm F}^2$$

$$L_{C_{CDN}} = \sum_{i=1}^{n_l} \|y_i - C_{CDN}(C_M(x_i)C_M(x_i)^{\top})\|_{2}^2$$

$$\lim_{k \to \infty} \|y_i - C_{CDN}(C_M(x_i)C_M(x_i)^{\top})\|_{2}^2$$

• We balances the update processing between $C_{\rm M}(.)$ and $C_{CDN}(.)$ to further help each other in the training stage and achieve the promising performance at last.

$$L_C = \gamma L_{C_M} + (1 - \gamma) L_{C_{CDN}}$$
Real samples
Feature S

Framework of our correlation discovery network for multi-label prediction

Summary

- Generative model: generate and diversify the training samples.
- Correlation Discovery Network automatically learns the latent label correlation across different labels.
- All the networks are trained simultaneously to achieve the best performance.

Framework of our correlation discovery network for multi-label prediction

Experiments (1)

Setting:

Conventional MLL, Zero-shot MLL

Image annotation, image retrieval

Datasets:

Six fine-grained image datasets:

- Corel5K Dataset [1]
- ESP Game Dataset [2]
- IAPRTC-12 Dataset [3]
- SUN Dataset [4]
- CUB Dataset [5]
- AWA Dataset [6]

Samples of CUB dataset

polar bear

black: no white: yes brown: no stripes: no water: yes eats fish: yes

Samples of AWA dataset

[1] "Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary." ECCV, 2002. [2] "Labeling images with a computer game." SIGCHI 2004. [3] Grubinger, Michael, et al.
 "The iapr tc-12 benchmark: A new evaluation resource for visual information systems." OntoImage. 2006. [4] "The SUN attribute database: Beyond categories for deeper scene understanding." IJCV 2014. Wah, [5] "The caltech-ucsd birds-200-2011 dataset." 2011. [6] "Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer". CVPR, 2009

Experiments (2)

Multi-label prediction performance:

•	Conventional setting.	Data	Method	Pre	Rec	F1	N-R	mAP	-	Data	Method	Pre	Rec	F1	N-R	mAP
•	Five metrics		LR	0.2859	0.3211	0.3025	128	0.3630	-		LR	0.6209	0.1473	0.2457	102	0.6807
			SSMLDR	0.2/41	0.3366	0.3022	143	0.3410			SSMLDR	0.6879	0.1700	0.2726	102	0.6723
			FastTag	0.3123	0.3657	0.3369	143	0.3871			FastTag	0.6816	0.1473	0.2457	102	0.6914
	 Precision 		ML-PGD	0.2575	0.2911	0.2732	122	0.3727			ML-PGD	0.7110	0.1614	0.2631	101	0.7087
		Corol	SAE	0.2962	0.3442	0.3184	141	0.3823		OUN	SAE	0.7183	0.1638	0.2668	98	0.7012
	• Recall	Corei	AG2E	0.3011	0.3520	0.3245	157	0.3568		SUN	AG2E	0.7685	0.1765	0.2871	99	0.6778
	- Necali		Ours	0.3335	0.3714	0.3514	148	0.4417			Ours	0.7985	0.1835	0.2985	102	0.7093
	• F1		LR	0.3793	0.2038	0.2653	215	0.3440	-		LR	0.2010	0.0239	0.0428	157	0.0638
	1 -		SSMLDR	0.3298	0.1885	0.2399	226	0.3156			SSMLDR	0.3410	0.0473	0.0832	178	0.2329
	. New zewe we cell		FastTag	0.4011	0.1927	0.2617	208	0.3904			FastTag	0.2147	0.0359	0.0615	167	0.3144
	 Non-zero recali 		ML-PGD	0.3239	0.2012	0.2482	210	0.4077			ML-PGD	0.3334	0.0451	0.0794	155	0.3288
		FOD	SAE	0.3861	0.1743	0.2402	194	0.3842		CLID	SAE	0.3383	0.0514	0.0908	196	0.3255
	 Mean average precision 	ESP	AG2E	0.3548	0.1525	0.2133	213	0.3730		CUB	AG2E	0.3409	0.0531	0.0911	190	0.3106
	Medil dverdge precision		Ours	0.4032	0.2178	0.2828	239	0.4327			Ours	0.3718	0.0541	0.0944	214	0.3561
	Five metrics		LR	0 4287	0.2041	0.2765	199	0.4211	-		LR	0.8798	0.0821	0.1500	75	0.8626
			SSML DR	0.3491	0.2520	0.2927	229	0 3981			SSMLDR	0 7812	0.0858	0 1546	67	0.8346
			FastTag	0.4346	0.2267	0.2927	227	0.4596			FastTag	0.7861	0.0020	0.160/	72	0.8701
•	Our approach significantly		MI DCD	0.4132	0.2207	0.2900	227	0.4570			ML_PGD	0.5305	0.0949	0.1094	57	0.0791
			NIL-FOD	0.4152	0.2441	0.3011	230	0.4074			SVE	0.0593	0.0055	0.1742	72	0.9121
	outperform other baselines	IAP	SAE	0.3337	0.2282	0.2774	213	0.4309		AWA	SAE	0.9065	0.095/	0.1742	73	0.939/
			AG2E	0.3829	0.2330	0.2897	229	0.4353			AG2E	0.8485	0.0827	0.150/	/3	0.9033
			Ours	0.4732	0.2648	0.3396	237	0.5295			Ours	0.9716	0.0871	0.1599	83	0.9291

Multi-label prediction results on six datasets

Experiments (3)

Multi-label prediction performance:

- Augmented multi-label datasets
 - With more labels
- Zero-shot Multi-label Learning
 - No overlapped between training and testing samples (e.g., Horse and Zebra)

Data	Methods	Pre	Rec	F1	N-R	mAP
	LR	0.2842	0.2304	0.2545	103	0.3762
	SSMLDR	0.3036	0.2791	0.2908	134	0.3660
	FastTag	0.3329	0.3145	0.3234	136	0.4127
	ML-PGD	0.3245	0.3011	0.3124	140	0.4275
Const	SAE	0.3168	0.3037	0.3101	128	0.4192
Corel-A	AG2E	0.3273	0.3172	0.3221	143	0.3985
	Ours	0.3438	0.3219	0.3325	138	0.4773
	LR	0.3848	0.1256	0.1894	178	0.3913
	SSMLDR	0.3253	0.1697	0.2231	202	0.3357
	FastTag	0.3886	0.1531	0.2197	196	0.4254
	ML-PGD	0.3713	0.1184	0.1795	162	0.4211
	SAE	0.3153	0.1425	0.1966	156	0.4050
ESP-A	AG2E	0.3518	0.1492	0.2095	196	0.4030
	Ours	0.4772	0.1944	0.2763	225	0.4436

Performance based on augmented datasets

Data	Method	Pre	Rec	F1	N-R	mAP
	LR	0.7047	0.1548	0.2539	97	0.6616
	SSMLDR	0.6637	0.1481	0.2422	95	0.6581
	FastTag	0.6906	0.1522	0.2494	90	0.6706
	ML-PGD	0.7037	0.1471	0.2433	95	0.6829
CUN	SAE	0.6978	0.1710	0.2747	100	0.6513
50N	AG2E	0.7125	0.1618	0.2637	88	0.6693
	Ours	0.7531	0.1857	0.2979	101	0.6911
	LR	0.2600	0.0307	0.0549	160	0.2693
	SSMLDR	0.2926	0.0383	0.0677	166	0.2329
	FastTag	0.2231	0.0434	0.0726	143	0.2967
	ML-PGD	0.2392	0.0365	0.0635	117	0.3178
CUD	SAE	0.2552	0.0469	0.0798	167	0.3102
CUD	AG2E	0.2808	0.0481	0.0821	163	0.2693
	Ours	0.3091	0.0488	0.0843	179	0.3264
	LR	0.7555	0.0766	0.1392	66	0.8809
	SSMLDR	0.7017	0.0764	0.1378	66	0.7858
	FastTag	0.8610	0.0912	0.1649	81	0.8918
	ML-PGD	0.4338	0.0623	0.1091	49	0.8677
A 337 A	SAE	0.9015	0.0926	0.1679	78	0.8918
AWA	AG2E	0.8247	0.0811	0.1476	71	0.8874
	Ours	0.9249	0.0804	0.1480	83	0.8784

Performance of Zero-shot Learning Multi-label Learning Ablation Study:

- Four modifications:
 - Basic model
 - Only GAN model
 - Only Correlation Discovery Network
 - Our complete model
- Conclusion
 - Each module is effective
 - Their combinations further improve the performance

Experiments (4)

40

20

-20

-40

-50

0

Real and generated samples in

visual feature space

Experiments (5)

Ablation Study:

- Generative model: •
 - t-SNE [1] visualization of real and generated samples
 - Performance when noise is deployed for data augmentation
- Conclusion •
 - Generated samples are similar compared with real samples. Generative module is effectively in our model
 - Adding noise is not an effective strategy

0.25	0.3612	0.0533	0.0936	211	0.3467
0.30	0.3591	0.0531	0.0932	209	0.3416
0.35	0.3505	0.0530	0.0930	208	0.3389
0.40	0.3393	0.0529	0.0929	206	0.3351
0.45	0.3314	0.0528	0.0927	204	0.3232
0.50	0.3248	0.0526	0.0926	202	0.3215

Multi-label performance when different level of Gaussian noise is added into the visual feature

0.00	0.3718	0.0541	0.0944	214	0.3561
0.05	0.3711	0.0540	0.0941	214	0.3561
0.10	0.3692	0.0538	0.0943	214	0.3537
0.15	0.3668	0.0537	0.0941	214	0.3511
0.20	0.3647	0.0534	0.0938	212	0.3482
0.25	0.3612	0.0533	0.0936	211	0.3467
0.30	0.3591	0.0531	0.0932	209	0.3416
0.35	0.3505	0.0530	0.0930	208	0.3389
0.40	0.3393	0.0529	0.0929	206	0.3351
0.45	0.3314	0.0528	0.0927	204	0.3232
0.50	0.3248	0.0526	0.0926	202	0.3215

Rec

F-1

Pre

Noise

50

N-R

mAP

Parameter analysis

- Trade-off between C_M and C_{CDN}
 - Parameter insensitive

Experiments (6)

Time consumption

• Efficient for large-scale applications

Experiments (7)

Image annotation

Zero-shot image annotation

- Given an image, predict all the positive labels.
- The image categories are not overlapped in training stage.

Image retrieval

• Given a target label, retrieve all candidate images.

Multi-label image annotation results in SUN dataset

Image retrieval result of SUN dataset. Green and red boxes indicate correct and incorrect retrieval.

Related works

Dual Relation Semi-Supervised Multi-Label Learning Lichen Wang, Yunyu Liu, Can Qin, Gan Sun, and Yun Fu. In *AAAI* 2020.

• Jointly consider feature correlation and label correlation

Low-Rank Transfer Human Motion Segmentation

Lichen Wang, Zhengming Ding, and Yun Fu. *TIP*. Learning Transferable Subspace for Human Motion Segmentation

Lichen Wang, Zhengming Ding, and Yun Fu. In IJCAI'2018.

Dual-Side Auto-Encoder for High-Dimensional

Time Series Segmentation

Yue Bai, Lichen Wang, Yunyu Liu, Yu Yin, Yun Fu

Spatial-temporal correlation discovery

Generatively Inferential Co-Training for Unsupervised Domain Adaptation

Can Qin, Lichen Wang, Yulun Zhang, Yun Fu. In AAAI'2020.

Explore instance correlations across different domain

Research works

Multi-view Action Recognition

Торіс

• Multi-view Action Recognition

Setting

- Input: Multi-view action sequences
 (e.g., RGB + Depth)
- Output: Action prediction

Challenges

- Heterogeneous multi-view feature domains
- Incomplete/missing view sequences
- Inconsistent view-specific predictions

Multi-view action recognition

Research works

Generative Multi-view Action Recognition

Motivation

Three major components to solve the challenges:

- 1. View-specific Encoders
- 2. Cross-view Adversarial Generation
- 3. View Correlation Discovery Network

Motivation of our generative multi-view action recognition

1. View-specific Encoders

Mapping original feature to more distinctive subspaces

- Seek distinctive action representations in subspaces
- Label information + triplet loss objective:

2. Cross-view Adversarial Generation

RGB Subspace

D

Depth Subspace

G₂

Generative G_1

► R/D

Loop

Cross-view Adversarial Generation

R/D

Generate one view conditioning on the other view

- Increase cross-view representation diversity
- Enhance model robustness
- Address missing/incomplete view sequences

$$\begin{cases} L_{G_{1}d} = -E_{z \sim p_{z}(z)} \log \left(1 - D_{1} \left(G_{1}(z|E_{1}(X_{tr}^{1}))\right)\right) \\ L_{G_{1}s} = E_{z \sim p_{z}(z)} \left(\|G_{1}(z|E_{1}(X_{tr}^{1})) - E_{2}(X_{tr}^{2})\|_{F}^{2}\right) \\ L_{D_{1}} = E_{X \sim p_{X}(X)} \log D_{1} \left(E_{2}(X_{tr}^{2})\right) \\ + E_{z \sim p_{z}(z)} \log \left(1 - D_{1} \left(G_{1}(z|E_{1}(X_{tr}^{1}))\right)\right) \end{cases}$$

View-correlation discove network

3. View Correlation Discovery Network

Explore high-level label correlations across different views

- View-specific initial classification is firstly obtained
- Pair-wise label correlation matrix is generated
- VCDN fully explore the latent high-level label correlation for higher performance

Summary

- Three components work together
- Jointly trained in end-to-end manner

Framework of Generative Multi-view Action Recognition

Action recognition:

- Datasets: UWA[1], MHAD[2], and DHA[3]
- Multi-view action recognition
- Missing/incomplete multi-view (i.e., single-view) action recognition

Method	RGB	$R \rightarrow D$	Depth	$D \rightarrow R$	R+D	Method	RGB	$R{\rightarrow}D$	Depth	$D {\rightarrow} R$	R+D	Method	RGB	$R{\rightarrow}D$	Depth	$D \rightarrow R$	R+D
LSR	67.59	69.17	45.45	37.73	68.77	LSR	96.46	97.17	47.63	42.51	97.17	LSR	65.02	65.43	82.30	48.56	77.36
SVM [36]	69.44	68.53	34.92	34.33	72.72	SVM [36]	96.09	96.80	45.39	45.13	96.80	SVM [36]	66.11	70.24	78.92	78.18	83.47
VLAD [14]	71.54	-	-	-	-	VLAD [14]	97.17	-	-	-	-	VLAD [14]	67.13	-	-	-	-
TSN [51]	71.01	-	-	-	-	TSN [51]	97.31	-	-	-	-	TSN [51]	67.85	-	-	-	-
WDMM [1]	-	-	46.58	-	-	WDMM [1]	-	-	66.41	-	-	WDMM [1]	-	-	81.05	-	-
AMGL [30]	69.17	71.54	39.92	35.96	68.53	AMGL [30]	96.46	97.11	30.03	29.96	94.70	AMGL [30]	64.61	59.05	72.84	67.33	74.89
MLAN [29]	67.19	67.19	33.28	33.61	66.64	MLAN [29]	96.05	96.10	41.48	41.25	96.46	MLAN [29]	67.91	67.91	72.96	72.83	76.13
PM-GANs [49]	-	71.36	-	49.01	-	PM-GANs [49]	-	96.76	-	66.84	-	PM-GANs [49]	-	68.72	-	76.02	-
Ours	-	73.53	-	50.35	76.28	Ours	-	98.23	-	68.32	98.94	Ours	-	69.72	-	83.48	88.72

UWA

MHAD

DHA

Performance on three multi-view action datasets

Hossein Rahmani, et al. Histogram of oriented principal components for cross-view action recognition.IEEE Trans. PAMI, 38(12):2430–2443, 2016
 Ferda Ofli, et al. Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53–60, 2013.
 Yan-Ching Lin, et al. Human action recognition and retrieval using sole depth information. In Proc.ACM MM, pages 1053–1056, 2012.

Ablation Study for generative module:

- Performance with/without generative model
- t-SNE^[1] visualization of real and fake samples

[1] SL.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014.

Classification performance of VCDN compared with simple NN.

Performance with different label fusion modules

Performance with different label fusion modules

 VCDN compared with baseline neural networks 	
	Setting
	RGB-C ₁
	Depth- C_2
$\mathbf{S}^{0.5}$	DCDD E. E.

Ablation Study for view-correlation discovery network:

- VCDN compared with different label fusion/correlation learning models
 - Feature/label concatenation & label average/weighted fusion

						0.8				Setting	UWA	MHAD	DHA
						0.7	PT7			$RGB-C_1$	69.18	96.42	68.15
						0.6]	Depth- C_2	45.28	63.05	79.79
						rracy		BGB		RGBD-Fea-En-Con	68.78	96.82	70.85
								Depth		RGBD-Fea-Ori-Con	69.22	97.32	70.83
Dataset	1-layer	2-layer	3-layer	4-layer	VCDN	. 0.3		Fea-Ori-Con		RGBD-Lab-Con	70.38	96.28	80.95
UWA	74.31	74.70	73.52	75.10	76.28	0.2		Lab-Con Lab-Ave		RGBD-Lab-Ave	71.84	97.56	83.28
MHAD	97.83	97.88	96.47	95.76	98.94 99. 7 2	0.1	μ	VCDN (Ours)]	RGBD-Lab-Wei	71.15	97.17	83.95
DHA	86.01	87.24	85.19	82.72	88.72	. 0	20 40	60 80 100 120 140 1	60 180 200	RGBD-VCDN (Ours)	74.07	98.06	84.32

Experiments (3)

EV-Action: Electromyography-Vision Multi-Modal Action Dataset

Lichen Wang, Bin Sun, Joseph Robinson, Taotao Jing, Yun Fu. FG'20

A large-scale multi-view human action datasets

Skeleton Aware Multi-modal Sign Language Recognition

Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li, Yun Fu. CVPRW'21

RGB, depth, and skeleton based multi-view recognition

Online Multi-task Clustering for Human Motion Segmentation

Gan Sun, Yang Cong, Lichen Wang, Zhengming Ding, Yun Fu. ICCVW'2019

Multi-view spatial-temporal data clustering

Generative View-Correlation Adaptation for Semi-Supervised Multi-View Learning

Yunyu Liu, Lichen Wang, Yue Bai, Can Qin, Zhengming Ding, Yun Fu. In ECCV'2020.

Explore view-correlation in semi-supervised learning scenario

Research works

Graph Representation Learning

Торіс

Inductive and unsupervised graph representation learning

Setting

- Input: graph with node attributes and edge attributes
- Output: Dense graph representation as vectors

Why Inductive and Unsupervised are Important?

A wide range of potential applications [1]:

- Social Network
 - Facebook, Twitter, WhatsApp
- Finance
 - Credit card fraud, Money laundry
- Logistics Industry:
 - eBay, Amazon, FedEx

Challenges:

- Not enough labeled samples
- Learned model should be generalized to unseen data

Fake Social Account

Credit Fraud

Computer Hack

Research works

Challenges

Topic

• Inductive and unsupervised graph representation learning

Challenges:

- Existing approaches are in transductive setting
 - Difficult to handle unseen graphs
- Reconstruction-based approach
 - How similar of two graphs?
 - Graph Isomorphism is hard and rigid
 - Computational costly

Isomorphism test is a necessary but hard and computational cost in graph representation learning

We proposed a framework that addresses the practical need for graph representation learning in real-life applications

The proposed Framework: SEED (1)

SEED: Sampling, Encoding, and Embedding Distributions

- **Sampling**: Random walk-based subgraph sampling from the input graph
 - Difficult to directly get whole graph representations
 - Could be easier to obtain representations for walks
- **Encoding**: Subgraph encoding via earliest visiting time
 - Make the process efficient and the representations effective

Lichen Wang, Bo Zong, Qianqian Ma, Wei Cheng, Jingchao Ni, Wenchao Yu, Yanchi Liu, Dongjing Song, Haifeng Chen, and Yun Fu, "Inductive and Unsupervised Representation Learning on Graph Structured Objects," 2020 International Conference on Learning Representations (ICLR), .

The proposed Framework: SEED (2)

SEED: Sampling, Encoding, and Embedding Distributions

• Embedding Distributions:

We encode a vector distribution into a single vector, which should preserve the similarity between vector distributions.

- Each input graph is reduced into a set of vectors, each of which is the representation for a sampled subgraph.

- Given that we have sampled a sufficient number of subgraphs, if two input graphs are similar, their vector distributions should be similar

Sampling & Encoding

WEAVE: Random Walk with EArliest Visit timE).

- Random walk (RW) in graphs
- Revisit information: earliest visiting time
- Advantages:
 - RW: easy to reconstruct, but no loop info preserved
 - RW + revisit: easy to reconstruct with loop info
 - RW with revisit contains more structural info

Encoding results of Vanilla random walk and WEAVE. WEAVE could distinguish the difference of the two graphs.

Embedding Distribution

- Insight: Walk distribution representation similarity \Rightarrow graph similarity
- Theoretical: as proved, distribution $R_{\mathcal{G}} = R_{\mathcal{H}}$ if graph \mathcal{G} and \mathcal{H} are isomorphic
- **Option 1**: Identity kernel
 - We assume $r_{g} \sim N(\mu_1, I)$ and $r_{\mathcal{H}} \sim N(\mu_2, I)$, it is simple but surprisingly effective.

$$\hat{\mu}_{\mathcal{G}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{z}_{i} \qquad \qquad \hat{\mu}_{\mathcal{H}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{h}_{i}$$

• **Option 2**: Commonly adopted kernels

$$\hat{\mu}_{\mathcal{G}}' = \frac{1}{s} \sum_{i=1}^{s} \hat{\phi}(\mathbf{z}_{i}; \theta_{m}) \quad \hat{\mu}_{\mathcal{H}}' = \frac{1}{s} \sum_{i=1}^{s} \hat{\phi}(\mathbf{h}_{i}; \theta_{m}) \quad D(P_{\mathcal{G}}, P_{\mathcal{H}}) = \|\hat{\mu}_{\mathcal{G}}' - \hat{\mu}_{\mathcal{H}}'\|_{2}^{2}$$

Theoretical Insights

Theorem: Given graphs \mathcal{G} and \mathcal{H} , distribution $R_{\mathcal{G}} = R_{\mathcal{H}}$ if graph \mathcal{G} and \mathcal{H} are isomorphic

The theorem holds for the situations:

- Graphs without any attributes
- Graphs with node attributes
- Graphs with node and edge attributes

Experiments (1)

- Seven graph datasets
- Two down-stream tasks:
 - Clustering
 - Classification
- Our approach obtains the highest performance.
 - Up to 10% improvements

	Setting	Datasets	Methods	SAGE	GIN	GMN	SEED	SAGE	GIN	GMN	SEED
	Setting	Dulusols	Metric	No	de Featu	re Exclue	led	No	de Featu	re Includ	led
5:		Degger	ACC	0.3853	0.4913	0.4924	0.4927	0.3840	0.4930	0.4808	0.4810
		Dezzer	NMI	0.0079	0.0958	0.0726	0.1277	0.0003	0.0893	0.0651	0.0566
		MUTAG	ACC	0.6649	0.4997	0.4990	0.8014	0.6649	0.4963	0.4910	0.7260
		MUTAU	NMI	0.0150	0.0946	0.0825	0.3214	0.0070	0.0933	0.0917	0.1567
		NC11	ACC	0.5098	0.5221	0.5022	0.5510	0.5070	0.5204	0.5005	0.5441
		Nen	NMI	0.0003	0.0015	0.0034	0.0073	0.0002	0.0013	0.0042	0.0089
	Clustering	PROTEINS	ACC	0.5657	0.5957	0.5966	0.5957	0.5657	0.5957	0.5957	0.5957
ho	Clustering	IROTENS	NMI	0.0013	0.0038	0.0117	0.0518	0.0004	0.0034	0.0067	0.0689
ne		COLLAB	ACC	0.5208	0.5458	0.5173	0.5973	-	-	-	-
			NMI	0.0025	0.0729	0.0193	0.2108	-	-	-	-
		IMDB-BINARY	ACC	0.5069	0.6202	0.5010	0.5776	-	-	-	-
			NMI	0.0002	0.0459	0.0093	0.0241	-	-	-	-
			ACC	0.3550	3607	0.3348	0.3816	-	-	-	-
nents			NMI	0.0019	0.0185	0.0112	0.0214	-	-	-	-
		Dezzer	ACC	0.3775	0.5094	0.5427	0.6327	0.3754	0.5270	0.5627	0.7451
		MUTAG	ACC	0.6778	0.6778	0.6889	0.8112	0.6889	0.6778	0.6889	0.8222
		NCI1	ACC	0.5410	0.5571	0.5123	0.6105	0.5328	0.5231	0.5133	0.6151
	Classification	PROTEINS	ACC	0.6846	0.7387	0.6216	0.7207	0.7027	0.7207	0.6357	0.7462
		COLLAB	ACC	0.5650	0.6170	0.5460	0.6720	-	-	-	-
	1	IMDB-BINARY	ACC	0.5400	0.7310	0.5140	0.7660	-	-	-	-
		IMDB-MULTI	ACC	0.3866	0.3843	0.3478	0.4466	-	-	-	-

Clustering & Classification Performance

Experiments (2)

How parameters impact the output quality?

- Subgraph extraction with different sampling number and walk length.
 - Quantitative performance
 - t-SNE[1] visualization

Summary

 More sampling number and walk length could improve the learned representation quality

-	Sampling Number	Classification	Clust	ering NMI	Walk	Classification	Clust	ering
	Number	Accuracy	ACC	INIVII	Length	Accuracy	ACC	NMI
	25	0.6832	0.6649	0.0031	5	0 7278	0.6640	0.0534
	50	0.6778	0.6649	0.0005	5	0.7278	0.0049	0.0554
	100	0.7778	0.6649	0.0537	10	0.7778	0.7633	0.2100
	150	0.7889	0.6968	0.1081	15	0.8167	0.7723	0.2495
	200	0.7778	0.7633	0.2100	20	0.8778	0.8245	0.3351
	300	0.7833	0.7502	0.1995	25	0.8722	0.8218	0 3380
	400	0.8389	0.7628	0.1928	25	0.8722	0.0210	0.5560
	800	0.8111	0.7660	0.1940	30	0.8743	0.8285	0.3321

Classification & clustering performance

Conclusion

- Correlation Discovery
 - Multi-label Learning:
 - Clustering
 - Classification
 - Multi-view learning
 - Feature space correlations
 - Label space correlation
 - Graph representation
 - Correlation representation

Thank you!

Lichen Wang

Electrical and Computer Engineering College of Engineering Northeastern University