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Abstract— Human motion segmentation has a great potential in
real-world applications. Conventional segmentation approaches
cluster data with no guidance from prior knowledge, which could
easily cause unpredictable segmentation output and decrease the
performance. To this end, we seek to improve the human-motion
segmentation performance by fully utilizing pre-existing well-
labeled source data. Specifically, we design a new transfer sub-
space clustering method for motion segmentation with a weighted
rank constraint. Specifically, our proposed model obtains the
representations of both source and target sequences by mitigating
their distribution divergence, which allows for more effective
knowledge transfer to the target. To guide new representation
learning, we designed a novel sequential graph to preserve
temporal information residing in both the source and the tar-
get. Furthermore, a weighted low-rank constraint is added to
enforce the graph regularizer and uncover clustering structures
within data. Experiments are evaluated on four human motion
databases, which prove the enhanced performance and increased
stability of our model compared with state-of-the-art baselines.

Index Terms— Human motion segmentation, low-rank learn-
ing, temporal data clustering.

I. INTRODUCTION

HE goal of human motion segmentation is to clus-

ter a long sequential motion into several short,
non-overlapping sections. Such a segmentation is an impor-
tant preprocessing step for a wide range of motion/action
related analytical/recognition tasks. In a lot of real applications
including security surveillance, motion analysis, and action
recognition. Video sequences usually contain tens or even hun-
dreds of continuous actions; however, most conventional action
recognition approaches cannot handle these scenarios [1], [2],
since they assume that each video only contains a single action.
Thus, action segmentation approaches are required in order
to divide the long videos before performing other analytical
processes on the videos.
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Temporal data clustering is a challenging task [3], [4]
which seeks robust and accurate clustering strategies to group
coherent sequences together without the guidance of prior
information. Compared with independent data, human motion
data contain temporal information, which is critical for seg-
mentation. A comprehensive survey [5] reveals that time
series data clustering is difficult due to its complex temporal
correlation and high dimensional data structure. Based on
the categorization mentioned in [6], there are three lines of
temporal clustering methods, including model-based [7], [8],
temporal proximity based [5] and representation based
algorithms [9]-[11]. Among them, the representation based
approaches, especially subspace clustering algorithms, are
most popular. Following this trend, our approach is also a
representation based method through subspace clustering.

The major goal of subspace clustering is obtaining a dis-
tinctive and effective representation of the target data for
clustering tasks. It achieves promising performances in a lot
of clustering applications, including action recognition [12]
and image clustering [13]. Several representative cluster-
ing approaches in subspace were designed recently, such
as low-rank representation (LRR) [12] and sparse subspace
clustering (SSC) [13]. The learned representation is used as
input for pre-existing clustering algorithms (e.g. normalized-
cut). Several modification methods are proposed to obtain
representations for specific clustering tasks. Reference [14]
added a dictionary into the model, which is simultaneously
updated in the learning process to achieve distinctive cod-
ing performance. Reference [15] designed a new divide-and-
conquer approach for data segmentation in large scale data.
An active subspace clustering approach to solve the nuclear
norm regularized with high efficiency is used to reduce compu-
tational complexity [16]. However, since subspace clustering
methods are usually based on self-representation, insuffi-
cient or incorrectly applied data may hinder the clustering
performance.

These clustering methods are based on an unsupervised
learning scenario, and sometimes it is difficult to obtain
reasonable and expected output without prior knowledge.
On the contrary, supervised learning strategy which learns
prior knowledge from labeled datasets is costing and expen-
sive; hence, it is not ideal to solve the problem by labeling
the data manually. Utilizing the information of related data to
enhance the clustering result of the target data is a crucial
approach. Fortunately, related and labeled data are easy to
achieve. Transfer learning, an effective strategy when encoun-
tering learning performance with limited prior knowledge,
is well explored in this scenario [17], [18]. It borrows
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Fig. 1. Framework of our approach, where well-labeled source data X g are set as a basis for our model to learn representations of both Xg and X7 under

a reconstruction scheme. This model transfers the data structure from the source to effectively learn the target representation. Since the distribution of source
and target data are different, a domain-invariant mapping P is learned simultaneously to align different distributions into a low-dimensional and distinctive
common space. Furthermore, a weighted rank constraint is utilized to enhance the effectiveness of the model and eliminate noise or outlier influences in the

sequential graph.

knowledge from relevant source information to improve the
target tasks.

To this end, we further explore transfer learning and propose
a novel human motion clustering approach (Fig. 1). The core
idea is to adapt well-labeled source knowledge from relevant
source datasets to improve the clustering performance on the
target motion data. To the best of our knowledge, we are the
first try to explore transfer learning in unsupervised clustering

problems. The novelties of this work are listed as follows:
o A novel transfer learning based subspace clustering

approach is proposed. We aim to transfer knowledge from
relevant source data to improve the clustering perfor-
mance of target data.

o A graph regularizer is built to uncover the temporal
and structural information residing in both the target
and source dataset. This approach obtains more dis-
tinctive and effective representations for subspace clus-
tering. Furthermore, we explore a rank constraint on
the graph regularizer to uncover additional structural
information.

o A domain-invariant projection is introduced and simulta-
neously trained during knowledge transfer, which aligns
the source and target features, which have different dis-
tributions, into a new and common space.

II. RELATED WORK

We introduce several related works including subspace
clustering, temporal data clustering, as well as transfer learning
in this section.

Subspace Clustering is an extension of traditional cluster-
ing methods. Traditional methods group similar data points
into the same cluster based directly on feature similarity.
Subspace clustering searches a subspace and finds the clusters
from a database and groups data inside a new and more
distinctive space. It has attracted increasing attention since it
achieved high clustering results in a lot of challenging tasks.
Sparse subspace clustering (SSC) [13] enforces sparse con-
straints on the coefficients and learns a sparse representation
from row data. Low-rank representation learning (LRR) [12]

considers the data structure globally. It seeks the lowest-ranked
representation in a given dictionary and usually achieves
better performance directly on the learned representations.
Least-square regression (LSR) [19] tries to group data samples
with high correlation together by deploying the Frobenius
norm. Discriminative subspace clustering method (DSC) [20]
deploys a quadratic classifier which is trained by unlabeled
data to obtain the discriminative information. A new affinity
measurement is also proposed which is more effective than
the commonly used one. In addition, many efforts have been
devised to reduce the computational cost [15], [21], [22].
Unfortunately, these methods are not well designed for tempo-
ral data clustering, especially for human motion segmentation.

They do not consider spatial connection or consider the
global structural information, neglecting the temporal clues
residing inside the data. Our approach utilizes a graph reg-
ularizer as well as rank constraint to preserve the temporal
structural information in the learned representations, which is
more accurate for time series clustering tasks.

Temporal Data Clustering aims to cut long sequential data
and achieve several short groups without any overlaps. It is a
necessary technique for a lot of real-world scenarios, including
natural language processing, human action recognition and
facial behavior analysis. Few methods have been developed
for human motion segmentation. An extension of Dynamic
Bayesian Networks (DBNs) [23] adds a truncated approxi-
mation to the Dirichlet process to improve the flexibility of
the clustering model. Semi-Markov K-means clustering [24]
is designed to explore repetitive patterns in the temporal data
for clustering. Hierarchical cluster analysis [25] proposes a
K-means kernel associated with a dynamic temporal align-
ment approach for temporal data clustering. Maximum-margin
temporal clustering [26] obtains each segment position and
learns a multiple-class Support Vector Machine simultane-
ously. Temporal Subspace Clustering (TSC) [14] learns both
a dictionary and data representation on the constraint of
a temporal regulation. These temporal clustering methods
belong to an unsupervised learning scenario, which utilizes a
self-representation strategy and focuses on digging clustering
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information from the target data itself, which is difficult to
properly cluster temporal data into a reasonable, meaningful
and expected result without any supervision or guidance,
so we propose a transfer learning based segmentation approach
which digs information from labeled source data and trans-
forms the knowledge to facilitate the clustering performance.

Transfer Learning transfers prior knowledge from similar
source data to enhance the result of target tasks. It is effective
in solving problems involving tasks which have only limited
training samples. Details about transfer learning are intro-
duce in the work of [27]. Three settings are arranged based
on [27]: unsupervised transfer learning [28], inductive transfer
learning [29], and transductive transfer learning [30], [31].
Our approach belongs to the transductive transfer scenario,
where the tasks of the source and target data but the domain
(or data distribution region) are different.

Transductive transfer learning transforms the information
from the source domain by manipulating the representa-
tion [32]. Domain shift is the biggest challenge of transfer
learning because the samples of the source and target distribute
in inconsistent regions in the feature space. One solution
is for the model to use a well-aligned data representation
which attempts to project the source and target into another
common space where the distribution gap can be mitigated.
In [33], external source data is set as a dictionary for the
model to learn a different representation of target data for
object recognition tasks. Intermediate representations of data
between the target and source domains are used in unsuper-
vised domain adaptation object recognition [34]. A low-rank
constraint based reconstruction approach which is proposed
to mitigate the domain distribution difference is proposed
to transfer the information source data into an intermediate
space [35]. Our approach also belongs to this line, but rather
than classifying individual tasks, which aims to obtain a more
distinctive representation for clustering tasks.

This work is the extension of our previous paper [36].
Compared with [36], we implement the previous temporal
graph regularizer with a weighted rank constraint, which
tends to uncover the global structure within data while pre-
serving more temporal and sequential knowledge. Further-
more, we involve one more new action dataset, evaluate it
with more cross-domain tasks, and achieve more quantitative
results. These results show a comprehensive and convinc-
ing demonstration of the effectiveness and stability of our
approach. Extensive experiments and discussion on modified
source and target data also illustrate the detailed property of
our approach. The results indicate that the proposed approach
achieves better performance than previous models.

III. THE PROPOSED APPROACH

We first present the motivation and problem definition.
Then, the details of our model are provided. In the end,
we give the solutions of the proposed model. Table I sum-
marizes the notations utilized throughout this work for bet-
ter illustration. Lowercase letters represent scale values and
matrices are represented by uppercase letters. Assume X =
[x1,x2,x3,--+,x,] is the data samples, and n is sample
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TABLE I
SYMBOL DESCRIPTION

Symbol Description

Xg Feature of labeled source data.

X7 Feature of unlabeled target data.

X Concatenated source and target data.
Zg Learned representation of Xg.

Zr Learned representation of X7.

w Generated weight regulation matrix.
Ly Graph Laplace matrix.

P Learned feature projection.

A1, Ao Trade-off parameter.

number which belong to a set of several subspaces {S}i-‘zl.
k represents cluster number. The goal is to segment X7 to the
corresponding clusters.

A. Motivation

Conventional subspace clustering approaches [14], [37]
explore self-representation strategy, where it is difficult to
achieve meaningful and expected output without any prior
knowledge guidance. These supervised approaches are not
ideal since achieving labeled data for specific tasks is costing
and labor intensive. Therefore, we aim to utilize motion
knowledge residing in source dataset to enhance the target
data clustering performance. Since temporal information resid-
ing inside the temporal motion data samples, we propose a
graph regularizer to preserve the temporal structure. Moreover,
a low-rank constraint is explored to reveal the distinctive struc-
ture in the learned latent structure and improve the clustering
performance.

B. Learning Transferable Representation

Segmenting the target data directly in the original feature
space is challenging since the distribution structure in the
feature space is not distinctive; because of this fact, the per-
formance of the segmentation would be low. For this, we set
labeled source data as a dictionary to reconstruct both source
and target data. The result is that the source and target would
lie in the same feature space. The reconstruction formulation
is written as follows:

X~ XsZ, 1)

where X is the concatenation of source and target samples, and
X = [Xs, X7] € R¥*"_ Each column represents a sample,
and Xs € R¥*1s X e RYX"T are feature matrix. feature
dimension is represented by d, X5 and X7 have the sample
number of ng and ny. n = ng + ny. Z is the learned
representation of X and Z = [z1, 22,23, - - , Zn], Where each
z; represents corresponding sample. Z = [Zg, Z1] € R"$*"
is the learned representations of both source and target based
on Eq. (1), i.e., Zy € R**"T | Zg € R"'S*"s,

As we mentioned before, Xg and X7 have different feature
distributions since they are achieved from different sources.
If X is directly used for coding the target data, high recon-
struction error would be involved in the learned represen-
tation Z. Therefore, we further explore a domain-invariant
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projection P to project Xg and Xr for knowledge transfer.
P € R"™*4 where r regulate the dimension of P and also the
dimension of the projected common space. The purpose of P
is to search a common and discriminative space which can
project the data samples to the space and reduce the distri-
bution difference between the target and source data. Thus,
we rewrite the new reconstruction formulation by seeking
a new feature space and transferring knowledge, shown as
follows:

PX ~ PXsZ. 2)

To implement the model of Eq. (2), we propose a
least-square regression based formulation as follows:

min | PX — PXsZI[f + 21| Pl 3)

where ||P||g is the Frobenius norm of P with a trade-off
parameter A, and | P ||% = >, Z?Zl | P;, j|2 specifically.
|IPX —PXsZ ||}2: is used to minimize the reconstruction error,
AP ||12: is designed to constrain the variable scale. There
is a simple format for Eq. (2) which directly obtains Zr
without concatenating X, such as PX7 &~ PXgsZr. However,
we expect to transfer more effective information between
the source and target data. Projecting both the target and
source could obtain more general P. In Eq. (3), the first
term can be decomposed to | P[Xs, X7]— PXs(Zs, ZT]||% =
IPXs—PXsZsllg+IP X —PXsZrllg. | PXs—PXsZsl is
necessary which is another crucial term to transfer knowledge
to P to obtain distinctive subspace. Quantitative evaluation
in following section will further prove this claim. Previous
work [19] has demonstrated that the Frobenius norm is an
effective process to preserve structural information in Z, which
is the key for clustering.

C. Temporal Graph Regularizer

Since human motion data are consecutive and sequential,
the temporal and structural information is a crucial clue for
accurate clustering. We expect to further preserve the temporal
information in Z for more accurate and robust clustering
performance. To this end, a graph regularizer 7(Z) was
designed to incorporate the temporal information into Z.
A graph based regularizer strategy [38] is an effective method
to obtain an effective representation. It respects the intrinsic
geometric structure and reveals the hidden semantic structures.
The purpose of T(Z) is to make the neighbors of learned
representation samples be close. By adding a rank constraint,
we further make the data structure of Z more distinctive. 7'(Z)
would regulate that its neighbors [z; /2, - -, Zi—3, Zi—2, Zi—1,
Zi+l » Zi4+2," "> Zit+s/2] be close to z;, where s is the length
of relevant frames. We first propose a graph regularizer T (Z)
to pull the similarities of nearby representation points and the
regularizer is shown below:

1 n n
T(2)=52 > willzi =3 =wZLwZ'). @)
i=1 j=1

In Eq. (4), tr(.) represents a matrix trace and it is defined
to be the main diagonal elements sum. The graph Laplacian
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Fig. 2. The structure of W in a simple case. If we have s = 2, ng = 9
and n7 = 6. We can see that when the distance of ith and jth frame-level
features is less than s, the W;; = 1 would regulate the learned representation
to be close. Furthermore, the correlation weight between two different groups
in source data is totally zeros to involve the labeled information to the model.

matrix Ly = D — W [39], where D;; = >, w;j and W €
R™" is the weight regularization matrix. Each element of W
is shown below:
1, if|i — j| <s,1(x;) =I(x}), for source
w;; =41, if|i — j| <s, for target 5)
0, otherwise,

where /(x;) represents the action class/label of z; in the source
data. The model assigns the samples which belong to the same
group get the temporal constraints in the source, so that they
are able to fully utilize labeled information from the source.
Furthermore, there is no requirement that the specific action
classes in the source and target should be overlapped. The
model still works well even if no overlaps exist between the
two action datasets. In addition, since segmentation labels in
the target data are unknown, we can assume the whole target
data representation has temporal property.

From Eq. (5), we observe that when the distance of the ith
and jth frame features is less than s, 7 (Z) would regulate the
learned representation to be close. If the distance is greater
than s, there is no regularization between the two samples.
To better illustrate how T (Z) encodes temporal data structure,
we generate a sample of W in a simple case. When s = 2,
ns =9 and nr = 6, the generated weight matrix W is shown
in Figure 2. The correlation weight between two different
groups in the source data are all zeros, so we further involve
segmented information into the model to constrain the coding
result. We only deployed binary weights to construct W to
show the core idea of temporal constraint. We consider the
frames to have the same level of similarity within s neighbors
no matter the distance between them. The other sophisticated
continuous value W for temporal preservation is also applica-
ble to have higher segmentation‘pe;lrformance. For example,
a continuous version W;; = ae_zo_‘é, if |i — j| < s can also
be utilized. It assumes that the closer the two frames are,
the more similar their representations should be. We briefly
test the performance based on continuous value W and achieve
roughly 0.5% performance improvement; the result proves
the effectiveness of this strategy. However, considering this
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is not our major research topic and this strategy requires a
sophisticated parameter tuning process, we still utilize binary
W in our implementation.

We transform Eq. (4) using the Eigen-decomposition tech-
nique on Lyw. After matrix manipulation, we obtain the
equation below:

tw(ZLwZ") = w(ZUw SwUy;, Z)
11
= w(ZUwS},Sj Uy Z) = |1 ZAwllE,  (6)

1
where Ay = UWSa,. Based on several previous works [40],
real-world data, especially human related data (human face and
gesture) [40], has strong rank structure. The rank constraint
could further reveal the subspace structure. Thus, this term
could achieve more effective and distinctive representation
than Frobenius norm.

Directly seeking the lowest rank of ZAy is difficult since
rank function has discrete nature. We follow the work of [12]
and replace Frobenius norm on ZAw by the nuclear norm
and modify the challenging problem to a convex optimiza-
tion problem. Then we obtain |ZAw %2 — [[ZAw|l« where
Il - I+ demotes nuclear norm. This term can involve low-rank
property into the learned representation.

Moreover, the work of Cai et al. [38] indicates that a
non-negative matrix factorization could further improve the
discriminating power of the learned representations. A non-
negative constraint Z > 0 was added to the objective function.
Thus, we achieve our objective function below:

min [|PX — PXZIIf + LIIPIE + 22 ZAw]ls.
st.Z>0, PXHX'PT =1, (7)

where the trade-off parameters, 41 and 4,, are used to balance
weights of the terms. The constraint PXHX ' PT = I would
preserve the data variance after projection, which could further
enhance the discriminability of the learned representation.
H=1- %1 is centering matrix, where I is an identity matrix
and 1 € R"*" is the matrix of ones.

D. Clustering

After achieving the learned representation Z, the corre-
sponding target representation Zr is cut out from Z where
Z =1[Zs, Zr]. And we cluster Zr to achieve our final goal.
A graph G is generated for existing clustering method in the
final stage. Previous clustering methods such as LRR [12]
and SSC [13] commonly defined the weights of clustering
graph as (|Z]| 4 |Z|)/2; however, the within-cluster samples
in human motion data are always highly correlated with
each other [41] and the commonly used G cannot exploit the
intrinsic relationships well. To take advantage of this property,
we follow the strategy of [14] and devise another similarity
measurement to construct the graph G € R"™". The weight
matrix Wg of the graph is defined on the distance between
each pair of the representation samples as follows:

JhJ

W6 (i, j) = -———
lzill2llzjll2

®)
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After the weight matrix W is obtained, we utilize an
effective conventional clustering approach, Normalized Cuts
(NCut) [42], is used to obtain the segment results. The cluster
number is known in our implementation.

E. Optimization

Solving Eq. (7) is a challenging problem since it is hard
to directly get the explicit solutions. Thus, we utilize the
alternating direction method of multipliers (ADMM) [43].
It optimizes each variable by fixing others. Two auxiliary vari-
able V € R"*" and U € R™" are used in the optimization
algorithm. We transform Eq. (7) as follows:

min _ |PX — PXsVI[:+ 2lPIE+ 220U,
P,V,Z,U
st.V=2Z U=ZAwy, Z>0, PXHX'PT =1. (9)

Eq. (9) is converted to an augmented Lagrangian
function [44], and the expression is shown below:

1
£=2IPX~ PXsVI%+ A1 ||IPIE + 22| U]l
M 2
+ (A1, V —-2Z)+ E”V —Zllg
+ (A2, U — VAw) + %nu — VAwl2,

st. U=ZAw,V=Z,PXHX'PT =1,Z>0, (10)

where A1 € R™*" and Ay € R"™" are Lagrangian multi-
pliers. u is the parameter for penalty. Eq. (9) can be derived
by alternatively minimizing the value of £ with respect to
Z,V and P. During minimization process, other variables are
fixed and we only update one variable each time until the equa-
tion is convergent. P and Z are initialized with random value.
V, Ay and A; are initialized with zero matrix.

Update V: By ignoring other fixed variables, the Lagrangian
equation (10) can be written as follow:

|
min 5||Px—PXSV||%+<A1,V—Z>+§||V—Z||%
+<A2,U—VAW>+§||U—VAW||%. (11)

We set the derivation of £ with respect of V to 0, as % =0.

The equation is shown below:

(—PX)T(=PXsV + PX)+ A1+ u(V —2)
+ Aa(—Aw) + u(VAy — U)A}, =0. (12)

Then we can get the following equation:

[—(PXs) PX + A —uZ — AAYy, — uUAL
+1(PXs) PXs+ ullV 4+ VIgAwAL1=0. (13)

We deploy Bartels-Stewart algorithm [45] to solve Eq. (13).
It is an effective way to solve a standard Sylvester equation.
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Update P: We simplify the equation by converting Eq. (10)
from Frobenius norm to trace format. The transformed equa-
tion is below:

P = argmin

PXHXTPT=I

IPX — PXsZ|} + 211 PI}
= argmin t(P[(X — XsZ)(X — XsZ) "
PXHXTPT=JI

+ M 11PT). (14)

We utilize the generalized Eigen-decomposition to solve
Eq. (14) which is shown below:

(X — XsZ)(X —XsZ)" + 1 Ilp=yXHX p, (15)

where p is the eigenvector from the Eigen-decomposition
result, and y is the value eigenvalue of p. The eigenvec-
tor vectors p;(i = 0,1,2,---,p — 2, p — 1) which can
minimize Eq. (10) are obtained from the minimum eigen-
value solutions to the eigenvalue problem. Moreover, P =
Lpo. pr -+ s pp—2 pp—1].

Update U: By ignoring other variables, we separate U and
obtain the following equation:

min LUl + (A2, U = ZAw) + SIU = ZAw[}.  (16)

We utilize Singular Value Thresholding (SVT) [46] operator
to effectively solve the equation.

Update Z: Eq. (10) can be written as follows when ignoring
other variables:

min (A1, V = 2) + SV - I (17)

Eq. (17) has a closed-formed solution whichis Z = V + %

In order to satisfy the non-negative constraint for new repre-

sentation Z, the update rule is written as follows:

Aq

Z=FyV+ -0, (18)

where F(.) is a non-negative function, (F;(A)); =

max (A;;,0). And A;; is an element in matrix A. The com-

plete clustering approach and solution steps are shown in

Algorithm 1. The update steps are iteratively executed several
times until the equation is convergent.

F. Complexity Analysis

There are three time-consuming processes in optimization.
The first is process is Step 3 (Updating V) by using Bartels
Stewart algorithm, its complexity is O(n% n). Second is Step 4
(Eigen-decomposition) which costs O(d?), where d is the
representation dimension. Third is Step 5 (Updating U) by
deploying the ALM approach. ALM approach is viable for
large scale dataset, based on the discussion of [12], the com-
putational complexity is O(n% n+ n%). To this end, the major
computational section of our approach is O(td> + 2tn§ + tn?g)
where t is the iterations number. There is still space to further
reduce the complexity. First, the source data can be evenly
reduced to a smaller size to speed up the optimization process
without losing the segmentation performance; we will discuss
the details in the next section. Second, Coppersmith-Winograd
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Algorithm 1 Human Action Subspace Clustering

Input: Source and target feature matrix Xg and X7, step

size 7, cluster number k, parameters 11, A2, s, u

Output: Index vector of clustering result ¥

1: Generate temporal matrix W, Ly, and Ay

2: while have not converged do

3:  Update V(;41) based on (13), others variables are fixed;
Update P41y based on (14), others variables are fixed;
Update U4 1) based on (16), others variables are fixed;
Update Z 4 1) based on (17), others variables are fixed;
Update Aj+1), Ar+1) = Ay + 110 (Vir1 — Zi+1);
Update Ag(ks1y, A2(k41) = Aoy M1 (Upr1 —Zi1 Aw);
9 k=k+1
10: end while
11: Building an undirected graph G based on Eq. (8)
12: Obtain k clusters based on G by NCut and output Y

AN A

algorithm [47] can reduce the Eigen-decomposition process
to O(d*37%). Thus, our approach is efficient and scalable for
real-world applications.

IV. EXPERIMENT

We evaluate our method associate with several state-of-
the-art representative subspace clustering methods on human
motion datasets.

A. Human Motion Datasets

Four human motion datasets were used in the experiments,
including the Weizmann dataset [48], Keck dataset [49],
Multi-Modal Action Detection dataset [50] and UT-Interaction
dataset [51]. Brief introductions are listed below:

Multi-Modal Action Detection Dataset (MAD) [50] con-
tains actions captured in multiple modals by a Microsoft
Kinect V2 system in RGB, depth and skeleton formats. The
RGB frames are in the resolution of 240 x 320f and 3D
depth images are in the resolution of 240 x 320. The human
skeleton information captured 20 body joints into a coordinate.
All formats were captured at 30 fps. Each subject performed
35 actions in two different indoor environments.

Weizmann Dataset (Weiz) [48] has 90 video sequences
including 10 actions performed by nine subjects in an outdoor
environment. The video resolution is 180 x 144 with at 50 fps.
All subjects perform ten everyday actions including running,
walking, skipping, bending and so on.

Keck Gesture Dataset (Keck) [49] includes 14 different
actions based on military signals. RGB frames are in reso-
lIution of 640 x 480. Three subjects performed 14 gestures
and actions. The videos were recorded using a fixed camera
with the subjects standing in front of a static and simple
background.

UT-Interaction Dataset (UT) [51] has 20 videos and
each videos contain 6 classes of human-human interactions
including punching, kicking, pushing, hugging, pointing, and
hand shaking. Each video sequence is around 1 minute. The
resolution of the videos is 720 x 480 at 30 fps.



WANG et al.: LOW-RANK TRANSFER HUMAN MOTION SEGMENTATION

B. Experimental Setup

Low-level HoG features [52] are extracted from each frame
of the corresponding videos to obtain 324-dimensional feature
vectors. The major reason we selected HoG feature is that
HoG feature is a frame-level feature. This kind of feature
could provide clustering approaches with more flexibility when
performing the segmentation tasks.

Due to the differences across training datasets, we standard-
ized the input data to make a more accurate model to segment
the given video. To achieve this, all input videos were modified
so that each video became a sequence of 10 actions. Both the
Weizmann and Keck datasets only contained a single action
per video, and had to be concatenated using the same setting
as [26]. The MAD dataset contained videos with sequences of
greater than 10 actions, which was cut down to fit the standard
used for testing. Once these sequences were created, they were
randomly chosen in groups of 5 sequences, tested against the
target sequence, and their performances were recorded. The
final reported clustering performance is based on the average
of every tested sequence group.

A1 and Ay are set to be 0.1 and 0.2 as default, the length of
correlated frames s is set to 7 and the projection size r is 80.
The parameter sensitivity will be evaluated in the next section.
We evaluate our approach associate with three classical as well
as six state-of-the-art clustering methods. Brief introductions
of compared methods are listed below:

o K-means (KMS) [53]. K-means tries to cluster each
observation to the group based on the nearest mean, thus
minimizing the within-cluster sum of squares.

o K-medoids (KMD) [54]. Unlike K-means approach,
k-medoids selects target samples as centers and cluster
with a generalization of the Manhattan Norm to define
the distance between points instead of [5.

o Spectral Clustering (SPE) [55]. the spectrum of the sim-
ilarity matrix of the target samples are utilized by spec-
tral clustering to implement dimensionality reduction to
achieve high clustering performance.

o Low-Rank Representation (LRR) [12]. LRR learns and
obtains the lowest rank representation of the data samples.
LRR effectively obtains the global structure of data sam-
ples, delivering more robust segmentation performance
from corrupted data associated with high level outliers.

o Ordered Subspace Clustering (OSC) [37]. OSC proposed
a temporal constraint and explicitly enforces the temporal
data representation to be similar.

o Sparse Subspace Clustering (SSC) [13]. SSC assumes
that a dictionary exists which can represent all data points
by a sparsely combination. It proposes a sparse constraint
to obtain the coefficients. It learns an effective sparse
representation for clustering.

o Least Square Regression (LSR) [56]. LSR utilizes the
Frobenius norm to encourage a grouping effect which
tends to group highly correlated data together.

o Temporal Subspace Clustering (TSC) [14]. TSC proposes
a temporal Laplacian regularization as well as a jointly
learned dictionary to obtain expressive and distinctive
codings for time series data.
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o Transfer Subspace Segmentation (TSS) [36]. TSS
approach also utilizes auxiliary data and transfers
segmentation knowledge from source to target dataset.

In our experiments, the codes of the methods are obtained

from authors and the parameters are tuned to achieve the
best performances. Normalized Mutual Information (NMI)
and Accuracy (ACC), two widely used metrics for cluster
validity [57], are utilized as metrics for evaluating our model.
ACC comes from classification with the best mapping. NMI
evaluates the mutual information across the ground truth
and the recovered cluster labels based on a normalization
operation. The expressions are shown as follows:

n
ACC = Zi:l o(s; - map(ri))/n,
Zi,j l’lij]Og nn;j

it N4
i nilog"e) (2 nj 4 log ™)

where map(r;) is the permutation mapping function which
maps each cluster label r; to the ground truth s;. d(x, y) is
the Kronecker delta function. d(x,y) = 1 if x = y, and
d(x,y) = 0 otherwise. Both ACC and NMI are positive
measurements which means the higher the number is the better
the performance.

NMI =

. (19

C. Performance Comparison

In the experiments, we set one sequence as source and
another one as target. Since four datasets were used for
evaluation, we segmented test videos based on the other three
datasets as source. For comparable methods such as LRR,
OSC, SSC and LSR, we only input target videos, since the
methods are not designed to utilize source information. For
TSC and TSS methods, we input both source and target
videos for segmentation. The results are listed in Table II.
The results show that our approach outperforms other methods.
Compared with the second best approach, TSS, our approach
achieves averagely 5% higher performance in terms of accu-
racy. We also concatenate source and target data as input to
TSC approach, and we can observe that the clustering result
drops about 1% in TSC. These results indicate that simply
increasing data samples cannot improve the clustering perfor-
mance. Second, the clustering performance would reduce if
the model cannot align the source and target effectively. The
result demonstrates that our approach is able to align different
distributions of two datasets and transfer useful information to
improve the segmentation performance.

We visualize segmentation results from one sample of our
approach and other compared methods in Figure 3. Different
colors indicate different action clusters. From visualization
results, we notice that the results of SSC, LRR and LSR
are unacceptable. They generate multiple fragments due to
the lack of the consideration for time sequential connec-
tions across near neighbor frames. OSC performs better but
still suffers from rhythmed actions such as working and
waving hand. The fragments are still significant. TSC and
TSS have much better performance, however, they are still not
sensitive and occasionally generate fragments in segmentation
results. However, from Figure 3 we find out that our approach
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TABLE II

CLUSTERING PERFORMANCE ACCURACIES (ACC) AND NMI. EACH SUBTABLE CORRESPONDING TO A DATASET. NAMES IN BRACKETS INDICATE
THE SOURCE DATASETS. M, K, W AND U REPRESENT MAD, KECK, WEIZMANN AND UT-INTERACTION, RESPECTIVELY. BOLD FONT
DENOTES THE BEST PERFORMANCE COMPARED WITH THE METHODS USING THE SAME SOURCE. (a) RESULT OF MAD DATASET.

(b) RESULT OF KECK DATASET. (c) RESULT OF WEIZMANN DATASET. (d) RESULT OF UT DATASET

(@) (b) (©) (d

Method ACC NMI Method ACC NMI Method ACC NMI Method ACC NMI

KMS 0.3541 0.4188 KMS 0.3510  0.4553 KMS 0.4081  0.5562 KMS 0.4712  0.5677
KMD 0.3226 0.3914 KMD 0.3970  0.4702 KMD 0.4441  0.5289 KMD 0.5122  0.5108
SPE 0.3639  0.4369 SPE 0.3886  0.4744 SPE 0.4127  0.5435 SPE 0.4477  0.4894
LRR 0.2397  0.2249 LRR 0.4297  0.4862 LRR 0.3638  0.4382 LRR 0.4162  0.4051
OSC 0.4327  0.5589 OSsC 0.4393  0.5931 0OSC 0.5216  0.7047 OSC 0.5846  0.6877
SSC 0.3817  0.4758 SSC 0.3137  0.3858 SSC 0.4576  0.6009 SSC 0.4389  0.4998
LSR 0.3979  0.3667 LSR 0.4894  0.4548 LSR 0.5091  0.5093 LSR 0.5183 0.4322
TSC 0.5556  0.7721 TSC 0.4781  0.7129 TSC 0.6111  0.8199 TSC 0.5340  0.7593
TSC(W)  0.5418 0.7684 TSC(M) 0.4653  0.6935 TSC(M)  0.5961  0.8032 TSC(M) 0.5288  0.7442
TSC(K) 0.5473  0.7691 TSC(W)  0.4548  0.6862 TSC(K) 0.5931  0.7971 TSC(K) 0.5213  0.7216
TSC(U) 0.5315  0.7691 TSC(U) 0.4421  0.6797 TSC(U) 0.5402  0.7796 TSC(W) 05111  0.7136
TSS(W) 0.5736  0.8202 TSS(M) 0.5395  0.8049 TSS(M) 0.6208 0.8509 TSS(M) 0.5535  0.7783
TSS(K) 0.5792  0.8286 TSS(W) 0.5485  0.7928 TSS(K) 0.6030  0.8326 TSS(K) 0.5371  0.7746
TSS(U) 0.5479  0.8108 TSS(U) 0.4951  0.7937 TSS(U) 0.5865 0.8124 TSS(W) 0.5944  0.7878
Ours(W)  0.5906  0.8213 Ours(M)  0.5509  0.8226 Ours(M) 0.6156  0.8579 Ours(M)  0.6299  0.8128
Ours(K) 0.5874 0.8244 Ours(W)  0.5649  0.7983 Ours(K)  0.6391  0.8599 Ours(K) 0.6127  0.7961
Ours(U) 0.5980 0.8211 Ours(U) 0.5519  0.7974 Ours(U)  0.6122  0.8267 Ours(W)  0.6296  0.8035

\ —— LRR —#—0SC —+— SSC —p—LSR —d—TSC TSS ==6=— Ours \

GT
LSR

SSC

OSsC

TSC

TSS

Ours

Fig. 3. Visualization of clustering results. The 10 colors denote 10 different
temporal clusters. The first row is the ground truth of 10 clusters. The result
illustrates that LRR, LSR and SSC are unable to segment temporal data well
because no temporal information is preserved in the model. The performances
are better for OSC and TSC but the results still contain fragments and
inaccurate parts. (Please view the color figure for better visualization).

accurately recognizes similar but different actions without
increasing fragments. It is a more effective, sensitive, and
robust approach.

Considering the fact that deep models achieve significant
high performance in the computer vision field [58], we also
evaluated the performance when deep features are deployed.
We extracted GoogleNet feature [59] frame by frame to
obtain the feature matrix Xg and X7, then tested the perfor-
mance in the same setting. The results are shown in Table III,
where Weizmann and UT datasets are set as the source and
target respectively. We observe that a deep model can achieve

4 6 8 10
Cluster Numbers

Cluster Numbers

Fig. 4. Segmentation performance of Weizmann dataset based on different
action numbers in a video. It indicates that our approach is stable and obtains
high accuracy in a wide range of cluster numbers.

TABLE III

PERFORMANCE COMPARISON BASED ON HOG FEATURE [52]
AND GOOGLENET (G-NET) FEATURE [59]

Feature =~ Method Weiz(M) Method UT(K)
ACC NMI ACC NMI
HoG Ours(U)  0.6122  0.8267 Ours(W)  0.6296  0.8035
G-Net  Ours(U)  0.6219 0.8291 Ours(W) 0.6213  0.8013

similar or slightly higher performance. This fact illustrates that
hand-craft features or deep features have similar performance
based on our approach, thus, both types of features are suitable
for this segmentation scenario.

Moreover, we changed the action numbers of each
video from the Weizmann dataset and tested the clustering
performance on all methods. We removed some actions and set
action numbers of each video from 2 to 10 and evaluated the
clustering performance. The results are illustrated in Figure 4.
We can see that our approach outperforms almost all other
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Fig. 5. (a) Segmentation performance of the Weizmann dataset based on different action numbers contained in dictionaries. This figure indicates that

the source action is crucial for improving the segmentation performance and that the temporal knowledge is indeed transferred. (b) Segmentation result
when different level of Gaussian noise is combined with the source data. It demonstrates the effectiveness of the knowledge transfer from source to target.
(c) Segmentation performance based on different action numbers contained in dictionaries. This figure indicates that the source is crucial to improve the

segmentation performance. The knowledge is indeed transferred.

methods. In addition, we also notice that our approach per-
forms more stably so that it achieves similar performances in
different cluster numbers. Other methods have more fluctuant
performance in different cluster numbers.

D. Source Data Analysis

Since our approach transfers structure information between
source and target, we evaluated the effectiveness of the source
information for the segmentation task.

We first tested the source action video which contained
different numbers of actions and the results are shown
in Figure 5 (a). We randomly selected the actions, ran the
test 5 times, and reported the average performance. From
Figure 5 (a), we observe that as the action number increases,
the performance also increases. This fact demonstrates that
the diversity of the source data is crucial to improving the
performance. More actions in the source video could transfer
useful information to learn distinctive representations of the
target video. This indicates the effectiveness of the source data
in the segmentation process.

We also reduced the frame numbers per action while keep-
ing the action numbers consistent. We utilized the frames
of original videos from the ratio of 10%, 20% to 100%.
The frames are evenly removed from the complete video and
the performance is illustrated in Figure 5 (c). We evaluate the
performance on Weizmann datasets. From this, we observe
that our model can still keep the performance when the frame
ratio is greater than 50%. The accuracy metric is robust and
stable enough to hold the performance when only 30% of the
frames are available. However, if the frames are less than 30%,
the performance would drop significantly. The result indicates
that our model does not require entire frames to achieve
high performance since the closest frames are redundant and
cannot provide diverse information to further improve the
performance. Thus, in the real-world applications, we can
reduce the source video frame numbers to further increase
the segmentation speed without losing accuracy.

Moreover, we added a different scale of Gaussian noise in
the source video and the result is shown in Figure 5 (b). The
performance was evaluated with different noise 5 times and
the average performance was reported. Figure 5 (b) clearly

TABLE IV

PERFORMANCE COMPARISON BASED ON DIFFERENT
CLUSTERING STRATEGIES FOR THE LEARNED Z7

Methods ~ Spectral Clustering ~ K-means  K-medoids Ours
ACC 0.5100 0.5604 0.5933 0.6122
NMI 0.8109 0.8210 0.8125 0.8267

shows that the model achieves the highest performance when
no noise is added in source data. As the noise increases,
the performance drops in the beginning but gradually becomes
stable at the end. It can be assumed that adding noise would
destroy data structure, which would implicatively eliminate
the learned representation structure. These results denote that
clean data without a large amount of noise are important to
further enhance the performance.

We further evaluate our model if we shuffle the dictionary
sequence. The ACC and NMI results are 0.5510 and 0.8203
in the same setting. These performances indicate that the dic-
tionary sequence is uncorrelated to segmentation performance.
Since X is set as dictionary to reconstruct source and target
data, shuffling the dictionary sequence would only change the
feature positions in learned representation Z, but the feature
position has no effect on clustering performance.

In our implementation, we deploy Eq. (8) for the final
clustering procedure on the learned target representation Zr.
We further compared other clustering methods and the result is
listed in Table IV. We observe that our clustering strategy can
achieve the best performance, which proves the effectiveness
and accuracy of the strategy.

E. Model Analysis

To prove the effectiveness of the proposed constraints in
our model, the model was further modified by removing and
utilizing other graph regularizer and testing the performance
under the same setting. The result is shown in Table II.
In Model-1, we removed the P Frobenius norm, ||P||I2:. The
performance dropped significantly, indicating that the con-
straint of P is crucial and that controlling the scale of P
avoids overfitting to the learned representation. In Model-2,
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Fig. 6. Parameter sensitivity analysis. (a) Segmentation performance with various project sizes r. (b) Segmentation performance with various values of s.

TABLE V
SEGMENTATION RESULT IN MODIFIED MODELS

Dataset Keck(M) Weiz(K)

Model ACC NMI ACC NMI
Model-1  0.2798 04115 0.2948 0.3844
Model-2  0.5266  0.7881  0.5985  0.8267
Model-3  0.5481 0.7999 0.5712  0.8172
Model-4  0.5395 0.8049 0.6030 0.8326
Model-5 0.5369 0.8186 0.6134  0.8533
Model-6  0.5519  0.8211 0.6391  0.8599

|ZAw]|,, the temporal and rank constraint, was removed. The
performance is lower than other models but still achieves high
performance compared with other compared methods. This
result indicates that the source data do improve the clustering
performance; however, it is not the optimized result without
the temporal and rank constraint. In Model-3 and Model-4,
we switch the nuclear norm to /1 and F-norm as ||[ZAw]||;
and ||ZAw||12: in the model. The performance becomes better
but still not ideal. In Model-5, the model only learned the
target representation X7 instead of both source and target,
X = [Xs,X7], to obtain Zp. It still could not achieve
the best performance compared with our proposed approach
in Model-6. Compared with other constraints, rank constraint
associated with the temporal graph in both source and target
data is the most accurate model to preserve the data structure
and achieve the highest segmentation performance.

F. Parameter Analysis

Figure 6(a) shows the parameter sensitivity of projection
size r. The figure denotes that the performance is not high
when r < 20, and if » > 20, although there is fluctuation
as r increases, the result is still relatively stable. Another
parameter s, the length of relevant frames, is also a major
parameter in our algorithm. Figure 6(b) illustrates that clus-
tering performance in various values of s. The figure shows
that when s > 5, the performance is accurate and stable.

There are two parameters, 41 and 1>, where /| constrains
the scale of P, and A, controls the weight of the temporal
regularizer and rank constraint. We deploy various values
to test the parameter sensitivity of our algorithm on the
Weizmann dataset. The result is illustrated in Figure 7. The
result denotes that our method can achieve more accurate
results when both 41 and 1, are greater than 0.1. The range of

ACC

Fig. 7.

Parameter analysis in different value of 11 and A;.

A1 and 1, are large, which reflects the fact that our approach is
robust and insensitive to parameters. The experimental results
demonstrate that every term in our approach is necessary
and contributes for improving the segmentation performance.
In summary, our approach is highly accurate, robust, stable
and parameter insensitive.

V. CONCLUSION

We introduced a novel transfer learning based human
motion segmentation approach. This approach explores clus-
tering knowledge from other similar well-labeled human
motion dataset, and transfers the knowledge to target data.
Specifically, source data was set as a dictionary, then a
projection and representation were jointly learned to align
source information and target data together. A temporal graph
regularizer and a rank constraint further improved the effec-
tiveness of the learned representation. Extensive experiments
demonstrated that our approach outperformed state-of-the-art
temporal subspace clustering methods on four human motion
datasets. Further experiments indicated that our approach
was robust, accurate and parameter insensitive. Since the
learned representations are distinctive across different actions,
thus, it is possible to further expand this model to more
comprehensive action segmentation as well as classification
scenario. In the future, we will explore on this direction.
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