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Abstract—In a real-world scenario, an object could contain
multiple tags instead of a single categorical label. To this end,
multi-label learning (MLL) emerged. In MLL, the feature distri-
butions are long-tailed and the complex semantic label relation
and the long-tailed training samples are the main challenges.
Semi-supervised learning is a potential solution. While, existing
methods are mainly designed for single class scenario while
ignoring the latent label relations. In addition, they cannot well
handle the distribution shift commonly existing across source and
target domains. To this end, a Semi-supervised Dual Relation
Learning (SDRL) framework for multi-label classification is
proposed. SDRL utilizes a few labeled samples as well as
large scale unlabeled samples in the training stage. It jointly
explores the inter-instance feature-level relation and the intra-
instance label-level relation even from the unlabeled samples.
In our model, a dual-classifier structure is deployed to obtain
domain invariant representations. The prediction results from
the classifiers are further compared and the most confident
predictions are extracted as pseudo labels. A trainable label
relation tensor is designed to explicitly explore the pairwise latent
label relations and refine the predicted labels. SDRL is able to
effectively and efficiently explore the feature-label relation as well
as the label-label relation knowledge without any extra semantic
knowledge. We evaluated SDRL in general and zero-shot multi-
label classification tasks and we concluded that SDRL is superior
to other SOTA baselines. Furthermore, extensive ablation studies
have been done which reveal the effectiveness of each component
in our framework.

Index Terms—Label relation learning, semi-supervised learn-
ing, multi-label learning, image retrieval, image annotation.

I. INTRODUCTION

IN real-world application, there could be dozens or even
hundreds of semantic descriptions related to a single object.

For instance, an image which shows “A man is walking near a
lake on a sunny day”. The labels including “Sunny”, “Lake”,
“Man”, and “Walking” are selected as the positive labels.

The uniqueness of Multi-label Learning (MLL) is whether
there are multiple labels in a given instance [1]. Several
challenges exist in MLL. First, most MLL databases (e.g.,
AWA [2], CUB [3], and SUN [4]) are small-scale consider cre-
ating and labeling a multi-label dataset is considerably costly.
Usually, there are tens of positive labels which should be
extracted from a large-scale candidate label pool. Some of the
candidate labels are subjective labels (e.g., “Stressful”), which

Lichen Wang, Yunyu Liu, Hang Di, Can Qin, and Gan Sun are with the
Department of Electrical and Computer Engineering, Northeastern University,
Boston, USA (Email: wanglichenxj@gmail.com, liu.yuny@northeastern.edu,
di.h@northeastern.edu, canqinn@gmail.com, sungan1412@gmail.com).

Yun Fu is with the Department of Electrical and Computer Engineering,
and Khoury College of Computer Science, Northeastern University, Boston,
USA (Email: yunfu@ece.neu.edu).

Sunny

Unlabeled 
samples

Ground truth labels 
in label space

W
ea

k

C
o
rr

el
at

io
n

Rainy

Wet
Label-level Correlation

…

…

Rainy Cloud

Stone

…

…

Instance-level Correlation in Feature Space

Label-level Correlation in Label Space

Wet

Rainy

Sunny

…

Labeled samples Pseudo label in label space

…

Fig. 1. There are two major difficulties in MLL. First, the labeled (green
circle) and unlabeled (blue circle) samples could have different distributions.
How to effectively align the distribution is difficult. Second, the latent label-
label relations are crucial knowledge for improving the MLL performance. For
instance, “Sunny” and “Rainy” are almost impossible to show up together
(negative). “Rainy” and “Wet” are more likely to appear together (positive),
and the relation between “Wet” and “Sunny” is weak (weak). How to explore
this semantic relation knowledge is challenging.

leads to non-negligible noises. Second, consider the natural
characteristics of multi-label, most of the labels follow a long-
tailed distribution where some labels are significantly popular
than others. For instance, in SUN dataset [4], with a total
of 14340 data points, the “Man-made” label exists in 8089
samples, while the “Fire” label only exists in 73 samples. This
phenomenon always causes considerable unbalanced training
samples. Third, the semantic connections across labels provide
extra and important knowledge. As illustrated in Figure 1,
some labels (e.g., “Sunny”, “Rainy”) have strong connections
than others. Effectively utilizing such label relations could
considerably improve the performance [5], [6]. Unfortunately,
few existing datasets provide such knowledge.

In general, a large-scale training set is a solution. However,
collecting such a dataset is expensive. Moreover, building
the semantic relation knowledge requires specialized semantic
knowledge, and the defined relation map is task-specific which
can not be extended to other tasks. Although creating a
large-scale dataset is difficult, related and unlabeled data is
everywhere and easy to obtain. Therefore, semi-supervised
learning [7], [8], [9], [10], [11], [12] are proposed which aim
to explore the source domain and further enhance the final
performance. Conventional semi-supervised methods mainly
explore the data distribution in feature space. [13] designed
a pipeline which mutually reinforce the learning from one
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Fig. 2. Illustration of our Semi-supervised Dual Relation Learning (SDRL) framework. There are four networks, a feature extractor E(·), two multi-label
classifiers C1(·), C2(·), and a label correlation learning network CR(·). Specifically, E(·) extracts image features from the given labeled and unlabeled
samples, then C1(·) and C2(·) obtain the initial multi-label prediction results respectively. A specifically designed adversarial learning mechanism is used
to justify the representation distributions of labeled and unlabeled samples. In addition, by comparing the prediction results from two classifiers, the most
confident predictions are set as pseudo labels and involved in the training strategy. Moreover, a label correlation tensor is proposed to explore the pairwise
prediction results from the classifiers. By this way, both the latent label correlations and the confidence of two classifiers will be explored and further refine
the prediction results. All the modules are alternatively optimized which fully reveals the latent knowledge from source and target samples to obtain the best
performance.

task to other tasks. [14] presented a generalized and flexible
graph CNN. [15] proposed a novel multi-view dimensional
reduction approach based an on adaptive graph. [16] proposed
an enhanced categorical alignment strategy which explores
multiple mutually complementary techniques. However, most
of these frameworks ignore the distribution gap issues, and
deriving the similarity from the original feature space could
reduce the learning performance dramatically. Second, most of
the works focus on the single-category classification settings,
which ignore the label relation knowledge [9], [10].

In this work, our model simultaneously discovers both the
feature-label relation and the cross label relation in semi-
supervised scenario. It fully utilizes existing samples (es-
pecially the unlabeled samples), and further mitigates the
distribution shift between unlabeled and labeled samples. A
novel Semi-supervised Dual Relation Learning (SDRL) frame-
work is proposed. The framework of SDRL is illustrated in
Figure 2. Specifically, SDRL considers labeled and unlabeled
samples as two inconsistent domains, and it continuously
updates the representations in a common subspace through
a dual-classifier domain adaptive strategy. At the same time,
the prediction results from two classifiers are compared and
the most confident labels are extracted as pseudo labels for
the following training iterations. Moreover, a label relation
tensor is proposed to explicitly explore the label relations.
By this way, feature-label and label-label relations are fully
considered. The contributions of SDRL are listed below:

• A two-classifier domain adaptation mechanism is de-
signed. It effectively mitigates the distribution shift be-
tween labeled and unlabeled samples, which improves
and stabilizes the final performance.

• An active pseudo-label assignment strategy is proposed
based on the two-classifier structure. It assigns and in-
cludes the most confident labels of the unlabeled samples
in the training iteration. This strategy efficiently explores
the label relations even in the unlabeled samples.

• A multi-label relation learning structure is proposed as-
sociated with a label relation tensor. It is designed to
explicitly explore the latent relations across the labels and

enhance the effectiveness and robustness of the model.
Our SDRL framework is a data-driven approach which auto-

matically and effectively explores feature and label relations.
All the networks and the co-training procedure can be run
jointly, and the prediction results can be directly obtained
without extra steps. It makes our model feasible for practical
applications without additional modifications. SDRL is an
extension of our previous work [17]. Compared with [17],
there are three major improvements. First, a learnable relation
tensor is designed to explicitly reveal the label relations. Sec-
ond, the explored knowledge gives the model more capacity
and flexibility to effectively improve the final performance.
Moreover, extensive experiments and comprehensive ablation
studies are done to prove the effectiveness of each module.

II. RELATED WORK

A. Multi-Label Learning (MLL)

MLL is a general setting where multiple labels could be
assigned to one instance [1]. A lot of practical applications
are related to this problem, including text classification [18],
image annotation [1], and video concept recognition [19]. A
simple solution is deploying multiple single-label classifiers.
However, the disadvantage of this strategy is that it does
not take the relations across labels into consideration. A pre-
defined label relation knowledge is considerably helpful for
MLL. [20], [6], [11] use semantic knowledge to build a label
dependency graph. [5] implements a label semantic structure,
which covers different labels and avoids label noise. However,
building such kind of label relation knowledge requires expert
knowledge. [5] explicitly includes the semantic relations as a
graph structured data as prior knowledge, which considerably
improve the classification performance. While, this strategy
required expert knowledge which is difficult and costly to
obtain. Moreover, this pre-defined relation is based on unique
tasks which is not feasible to be deployed to other tasks. [21]
projects the labels into a subspace and then learn the latent
relations in the subspace. [22] studies the object relations using
attention and RNN. [22] deploys recurrent networks as well
as attention strategy for label relation learning. [23] utilizes a
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X-Transformer framework, which fine-tunes deep transformer
models for the extreme MLL. A LightXML framework is
proposed in [24] which adopts dynamic negative label sam-
pling strategies. An efficient method was proposed to eliminate
the negative effect of label noise in [25]. [26] introduces a
multi-modality merging mechanism called MEFF for MLL.
[27] proposed a scalable deep learning architecture that in-
corporates label text and label connections which provides
effective and efficient real-time inferring. [28] designed a novel
APLC-XLNet structure which fine-tunes the auto regressive
strategy and obtains a dense representation of the target labels.
[29] proposed a DECAF framework which obtains enriched
models from the label metadata and jointly learns the model
parameters and the feature representations. However, these
approaches require large-scale datasets. While, the sizes of
the related databases [30], [31], [3], [4] are relatively small
which limits the potential performance. A few general works
proposed to handle these challenges [32], however it is not
feasible for MLL scenario.

In this paper, a semi-supervised learning model is proposed
which focuses on the label relation exploration. Previous
approaches mainly explore the label relations globally while
neglecting the label information residing in each instance. In
addition, our method not only learns the label relation from
the labeled data, but also extends it to the unlabeled data.

B. Semi-Supervised Learning (SSL)
SSL jointly explores the source and target data points [8],

[33], [7], [34], [35]. It is a useful mechanism for the scenario
where a large amount of samples can be obtained easily
while the labeling procedure is expensive. More detailed
introduction could be found in [8], [36]. Graph-based approach
is an effective direction [9], [7], [37], [10], [38]. [9] actively
extracts informative samples from the training set by an
initialization independent approach. A continuous relaxation
mechanism is proposed in [7] where the Gaussian random
fields and harmonic function method are deployed. However,
these approaches highly depend on whether the unlabeled data
has the similar distribution as the labeled data. Distribution
differences could easily cause negative effects. To solve this,
[37] generated an adaptive similarity graph to measure the
similarity in a more flexible way. [10] introduced a graph op-
timization strategy to solve the unsupervised feature selection.
[17] deployed a domain adaptation method for distribution
alignment of labeled and unlabeled samples. [35] utilized an
adaptive graph for robust label prediction. While, the methods
mainly reveal extra information from feature space. While,
in each instance, we consider the label-level relation is also
crucial. A few methods explore the label correlations in semi-
supervised scenario. The nuclear normalization is used in [39]
with the singular value decomposition to reveal the correlation
knowledge. [40] combines the label correlation learning and
feature selection based on sparse constraints. [41] deploys
a soft label matrix to learn the label distributions, recover
missing labels, and predict unlabeled samples simultaneously.
However, these methods indirectly explore the correlations
which limit the potential performance, and most of the meth-
ods are computational costly.

Our approach explicitly explores the label correlations via
a novel correlation tensor. Since deep networks are utilized,
the capacity and efficiency are further enhanced. Moreover,
our model considers labeled data and unlabeled data as two
domains and utilizes domain adaptation strategy to mitigate
the negative effect of the distribution shift.

III. OUR APPROACH

A. Preliminaries and Motivation

{Xl, Yl} is the given labeled data, where Xl ∈ Rd×nl

denotes the matrix of all feature vectors, and Yl ∈ Rdl×nl

represents the corresponding labels. nl is the number of
labeled instances. dl and d is the label vector dimension and
feature dimension respectively. A column of Xl, xi ∈ Rd,
denotes a single sample and yi is the label vector of xi.
Xu ∈ Rd×nu and Yu ∈ Rdl×nu are the feature and label
matrix from of the unlabeled instances. In the semi-supervised
scenario, the goal is to recognize Yu when Xl, Xu, and Yl are
given. The definition summary is shown in Table I.

B. Our Method

Figure 2 shows the framework of SDRL method. There are
four networks and a trainable label relation tensor in SDRL.
Specifically, it contains a feature encoder E(·), a label relation
network CR(·), and two multi-label classifiers C1(·) and C2(·).
At the beginning, E(·) encodes the representations of the
labeled and unlabeled samples into a common subspace:

Zl = E(Xl),
Zu = E(Xu),

(1)

where Zu ∈ Rdz×nu and Zl ∈ Rdz×nl are the obtained
features in the subspace. dz is the feature dimension. As
introduced above, Xl and Xu could be obtained from different
resources, which means that the feature distributions could be
slightly different. Training the model in the original feature
space would lead the performance decrease. To this end,
inspired by the MDA idea [42], we deployed a two-classifier
structure to achieve the initial multi-label classification and
label/unlabeled domain adaptation jointly. In our model, C1(·)
and C2(·) are utilized to obtain the initial prediction results
where the subspace features are set as the inputs:

LC(Xl, Yl) =
1

2

[
‖C1(Zl)− Yl‖2F + ‖C2(Zl)− Yl‖2F

]
. (2)

C1(Zl) and C2(Zl) are the prediction of the labeled sam-
ples, and LC(·, ·) is the loss function. In the optimization
pipeline, E(·), C1(·), and C2(·) are jointly optimized:

min
E,C1,C2

LC(Xl, Yl), (3)

In training procedure, the supervision information from
labeled samples are utilized to initially train C1(·), C2(·),
and E(·). However, the unlabeled samples are not explored
yet. As we mentioned, there could be domain shift between
labeled and unlabeled samples. Thus, we reused the two
classifiers as a domain adaptation framework which effectively
aligns the distributions together. Specifically, an adversarial
training strategy is used to update E(·), C1(·) and C2(·). When
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TABLE I
DESCRIPTION TABLE OF SYMBOLS

Symbol Descriptions

xi Original feature of the i-th data.
yi Groundtruth label vector of xi.

Xl, Xu Feature matrix of labeled and unlabeled samples.
f1i Predicted label vector of sample xi from classifier 1.
f2i Predicted label vector of sample xi from classifier 2.
Yl Groundtruth label of Xl.
d, dl Dimensions of feature space and label space.
nl, nu Labeled and unlabeled data point numbers.
α Hyper-parameter.

encoder E(·) is not updated, C1(·) and C2(·) are updated for
maximizing the multi-label variance of the unlabeled instances
Zu. The variance between two predictions could be evaluated
by a l1-norm metric:

d(f1i, f2i) =
1

dl
‖f1i − f2i‖1, (4)

where ‖ · ‖1 is l1-norm operation. f1i ∈ Rdl and f2i ∈ Rdl

are the prediction results from C1(·) and C2(·). We consider
Eq. (4) is an effective and simple difference metric, while other
algorithms such as l2-norm could also be utilized. Then, the
loss function of the Zu prediction differences is shown below:

LDA(Xu) = d(C1(Zu), C2(Zu)). (5)

In this step, we aim to train C1(·), C2(·) for maximizing
the classification difference:

min
C1,C2

−LDA(Xu) + λLC(Xl, Yl), (6)

The second term is the supervision training loss which is
used to keep the performance stable on the labeled sets, which
is crucial to avoid the model collapse. λ is a hyper-parameter
which controls the training weights between LC and LDA.
In addition, E(·) aims to learn the feature representation in
subspace which reduces the differences between the classi-
fication results. The objective function for updating E(·) is
shown below:

min
E

LDA. (7)

In summary, the adversarial learning strategy is deployed to
alternately update E(·), C1(·), and C2(·). Base on this strategy,
the samples from both labeled and unlabeled are will aligned,
and the domain shift challenge is mitigated.

As introduced above, label relation is another crucial knowl-
edge for improving the performance. C1(·) and C2(·) could
provide the initial multi-label predictions. However, they are
not capable enough to capture and utilize the sophisticated
label relations. To this end, we consider the continuous pre-
diction scores should contain extra information which could be
further explored. Thus, a specifically designed relation network
is proposed. As illustrated in Figure 2, we extend the initial
prediction result from C1(·), f1i, to a matrix by horizontally
padding. By this way, we could obtain the label matrix FH

1i :

FH
1i = [f1i, f1i, f1i, · · · , f1i], (8)

where FH
1i ∈ Rdl×dl . Similarly, we can have the vertical

padding matrix of f2i via the operation below:

FV
2i = [f2i, f2i, f2i, · · · , f2i]>, (9)

TABLE II
DATASETS STATISTICAL SUMMARY

Datasets Setting Training Testing Labels Ave

Corel5K [30] General 4,500 499 260 3.4
ESP Game [31] General 18,689 2,081 268 4.7
IAPRTC-12 [43] General 17,665 1,962 291 5.7

SUN [4] General 6,387 6,513 102 6.3Zero-shot 12,900 1,440

CUB [3] General 4,374 4,468 312 31.4Zero-shot 8,842 2,946

AWA [44] General 12,154 12,141 85 15.0Zero-shot 24,295 6,180

where FV
2i ∈ Rdl×dl . By this way, we obtain the two

padding matrices FH
1i and FV

2i . The major goal for the padding
operation is to make calculation of the label correlation tensor
easier in the implementation process. Given a position (m,n),
the combination of the prediction score of FH

1i and FV
2i denote

to the pairwise prediction scores of m-th and n-th candidate
labels. Specifically, FH

1i (m,n) is the prediction score of the
m-th label, xi. FV

2i (m,n) denotes the prediction score of n-th
label of xi. Instead of simple operations between the pairwise
label scores (e.g., sum or multiplication), we proposed a
trainable label relation tensor which explicitly explores the
correlations of each pair of the labels. Specifically, the label
relation tensor TR ∈ Rdl×dl×2, which could be considered
as the stack of two matrices, as TR = [TH

R , T
V
R ], where

TH
R , T

V
R ∈ Rdl×dl . We obtain the element-wise multiplication

between the label matrices and the correlation tensor, then we
sum the obtained matrices. The equation is shown below:

FC
i = δ(FH

1i ◦ TH
R + FV

2i ◦ TV
R ), (10)

where ◦ denotes the element-wise multiplication, and FC
i ∈

Rdl×dl is the label combination matrix, where each element
of FC

i is the fusion of a pairwise initial predictions obtained
from TR. The elements of TR are considered as the weights
of the pairwise predictions. δ(·) is a nonlinear activation such
as ReLU. FC

i is then reshaped to a vector as Rd2
l and be

forwarded to a final relation learning network, CR(·), which
is used to obtain the final predictions. The loss function is
illustrated below:

LCR
=

nl∑
i=1

‖yi − CR(F
C
i )‖22 . (11)

In the training procedure, CR(·) and TR are trained simul-
taneously with the other networks:

min
E,C1,C2,CR,TR

α

2
LC + (1− α)LCR

, (12)

where α ∈ [0, 1] is the trade-off value which is used to
balance the training between C1(·), C2(·), and CR(·). In our
implementation, we set α = 0.5 as default for simplicity.
Further parameter tuning (e.g., cross validation) could slightly
improve the performance. The detailed parameter sensitivity
analysis is provided in Section IV.

In conventional active learning scenario, the prediction
confidence could be directly obtained by finding the highest
prediction scores. However, MLL contains multiple positive
predictions which are not feasible by this strategy. To solve this
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TABLE III
CLASSIFICATION PERFORMANCE

Datasets Methods Pre Rec F1 N-R mAP

Corel

Regression 0.2859 0.3211 0.3025 128 0.3630
SSMLDR 0.2741 0.3366 0.3022 143 0.3410
FastTag 0.3123 0.3657 0.3369 143 0.3871

ML-PGD 0.2575 0.2911 0.2732 122 0.3727
SAE 0.2962 0.3442 0.3184 141 0.3823

AG2E 0.3011 0.3520 0.3245 157 0.3568
DRML 0.3154 0.3775 0.3437 148 0.4127
Ours 0.3341 0.3798 0.3555 150 0.4303

ESP

Regression 0.3793 0.2038 0.2653 215 0.3440
SSMLDR 0.3298 0.1885 0.2399 226 0.3156
FastTag 0.4011 0.1927 0.2617 208 0.3904

ML-PGD 0.3239 0.2012 0.2482 210 0.4077
SAE 0.3861 0.1743 0.2402 194 0.3842

AG2E 0.3548 0.1525 0.2133 213 0.3730
DRML 0.4373 0.2189 0.2918 227 0.4105
Ours 0.4396 0.2258 0.2984 231 0.4231

IAP

Regression 0.4287 0.2041 0.2765 199 0.4211
SSMLDR 0.3491 0.2520 0.2927 229 0.3981
FastTag 0.4346 0.2267 0.2980 227 0.4596

ML-PGD 0.4132 0.2441 0.3011 230 0.4674
SAE 0.3537 0.2282 0.2774 213 0.4309

AG2E 0.3829 0.2330 0.2897 229 0.4353
DRML 0.4570 0.2531 0.3258 230 0.5148
Ours 0.4513 0.2719 0.3393 235 0.5257

SUN

Regression 0.6209 0.1473 0.2457 102 0.6807
SSMLDR 0.6879 0.1700 0.2726 102 0.6723
FastTag 0.6816 0.1473 0.2457 102 0.6914

ML-PGD 0.7110 0.1614 0.2631 101 0.7087
SAE 0.7183 0.1638 0.2668 98 0.7012

AG2E 0.7685 0.1765 0.2871 99 0.6778
DRML 0.7906 0.1793 0.2923 102 0.6800
Ours 0.7918 0.1912 0.2994 102 0.7102

CUB

Regression 0.2010 0.0239 0.0428 157 0.0638
SSMLDR 0.3410 0.0473 0.0832 178 0.2329
FastTag 0.2147 0.0359 0.0615 167 0.3144

ML-PGD 0.3334 0.0451 0.0794 155 0.3288
SAE 0.3383 0.0514 0.0908 196 0.3255

AG2E 0.3409 0.0531 0.0911 190 0.3106
DRML 0.3714 0.0548 0.0955 202 0.3542
Ours 0.3755 0.0559 0.0973 205 0.3720

AWA

Regression 0.8798 0.0821 0.1500 75 0.8626
SSMLDR 0.7812 0.0858 0.1546 67 0.8346
FastTag 0.7861 0.0949 0.1694 72 0.8791

ML-PGD 0.5395 0.0635 0.1136 57 0.9121
SAE 0.9683 0.0957 0.1742 73 0.9397

AG2E 0.8483 0.0827 0.1507 73 0.9033
DRML 0.8689 0.0835 0.1523 75 0.9441
Ours 0.9593 0.0856 0.1571 82 0.9476

challenge, we proposed a method which reuse the prediction
results from C1(·) and C2(·) to determine the prediction
confidence. In our model, the unlabeled samples are forwarded
to C1(·) and C2(·), then the prediction differences is obtained
by Eq. (13). The prediction difference evaluation we used here
is l2-norm, which is different compared with Eq. (5):

df (xi) = ‖C1(E(xi))− C2(E(xi))‖22, (13)

where xi is a feature extracted from the unlabeled set. When
the differences are obtained, we sort df (xi) in an ascending
way and select the first multiple predictions as the pseudo
labels. After that, we include the pseudo labels and the
samples to the labeled set in the future training epoch. Since
databases have their unique characteristics (e.g., labels formats
and scale), which leads to slightly different label assignment
pipeline. For the CUB dataset [3], a threshold value d = 1 is
set. We consider xi as a training sample when df (xi) ≤ d.

There are two major phases in the training procedure. In
the first phase, the encoder and two classifiers (i.e., E(·),

TABLE IV
CLASSIFICATION PERFORMANCE WITH AUGMENTED LABEL SETS

Datasets Methods Pre Rec F1 N-R mAP

Corel-A

Regression 0.2842 0.2304 0.2545 103 0.3762
SSMLDR 0.3036 0.2791 0.2908 134 0.3660
FastTag 0.3329 0.3145 0.3234 136 0.4127

ML-PGD 0.3245 0.3011 0.3124 140 0.4275
SAE 0.3168 0.3037 0.3101 128 0.4192

AG2E 0.3273 0.3172 0.3221 143 0.3985
DRML 0.3345 0.3671 0.3500 147 0.4315
Ours 0.3461 0.3582 0.3520 147 0.4515

ESP-A

Regression 0.3848 0.1256 0.1894 178 0.3913
SSMLDR 0.3253 0.1697 0.2231 202 0.3357
FastTag 0.3886 0.1531 0.2197 196 0.4254

ML-PGD 0.3713 0.1184 0.1795 162 0.4211
SAE 0.3153 0.1425 0.1966 156 0.4050

AG2E 0.3518 0.1492 0.2095 196 0.4030
DRML 0.4202 0.1744 0.2465 209 0.4121
Ours 0.4335 0.1815 0.2559 213 0.4325

C1(·) and C2(·)) are first initialized based on the supervised
scenario with the labeled samples. This is important and nec-
essary which would make the initial correct prediction for the
pseudo label assignment in the next phase. The loss function
is LC(Xl, Yl) as shown in Eq. (3). In our implementation,
we trained E(·), C1(·) and C2(·) for 50 epochs. From the
experiments, we observe that LC(Xl, Yl) converges in all
evaluated datasets. The second phase is the loop of the pseudo
label assignment and extra training procedure. Specifically,
we set the ratio R which extracts a small portion of the
most confident predicted samples from the unlabeled samples.
R is different for different datasets, in our experiment, we
set R in [0.01, 0.03]. For example, if R = 0.01 and when
1000 unlabeled samples are given, we averagely extract 10
samples at the beginning, and when only 500 samples are
left, we extract 5 samples. We extract at least 1 sample in each
pseudo label assignment procedure. Then, the assigned pseudo
label would be considered as the ground truth sample for
training E(·), C1(·), and C2(·) alternatively based on Eq. (6)
and Eq. (7). In the training procedure, the relation tensor TR
and the final classifier CR(·) are consistently updated in both
the first and the second phases. The pseudo label is also
obtained from the output of CR(·). Moreover, another fixed
number-based assignment strategy also works which extracts
a consistent number (e.g., [1, 20]) of confident samples for
pseudo label assignment. The relatively small ratio of the label
assignment is to assure that the most confident and correct
pseudo labels are assigned. In our implementation, C1(·) and
C2(·), and CR(·) are fully connected networks with different
layers. Specifically, the E(·) is a 1-layer structure. C1(·) and
C2(·) are 1-layer structure associated with Sigmoid function.
The input to CR(·) consists of the results from C1(·), C2((·).

IV. EXPERIMENTS

A. Datasets

Six multi-label datasets are utilized in our experiments. The
statistical summary is illustrated in Table II.
• Corel5K Dataset [30] is an image dataset containing photos
from the Corel CD database. There are 4, 500 and 499 samples
for training and testing respectively. The total candidate labels
is 260 and 3.40 labels per sample on average.
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TABLE V
ZERO-SHOT MULTI-LABEL CLASSIFICATION RESULTS

Datasets Methods Pre Rec F1 N-R mAP

SUN

Regression 0.7047 0.1548 0.2539 97 0.6616
SSMLDR 0.6637 0.1481 0.2422 95 0.6581
FastTag 0.6906 0.1522 0.2494 90 0.6706

ML-PGD 0.7037 0.1471 0.2433 95 0.6829
SAE 0.6978 0.1710 0.2747 100 0.6513

AG2E 0.7125 0.1618 0.2637 88 0.6693
DRML 0.7512 0.1794 0.2896 97 0.6924
Ours 0.7583 0.1862 0.2990 99 0.7010

CUB

Regression 0.2600 0.0307 0.0549 160 0.2693
SSMLDR 0.2926 0.0383 0.0677 166 0.2329
FastTag 0.2231 0.0434 0.0726 143 0.2967

ML-PGD 0.2392 0.0365 0.0635 117 0.3178
SAE 0.2552 0.0469 0.0798 167 0.3102

AG2E 0.2808 0.0481 0.0821 163 0.2693
DRML 0.2981 0.0486 0.0835 153 0.3338
Ours 0.3110 0.0484 0.0838 164 0.3341

AWA

Regression 0.7555 0.0766 0.1392 66 0.8809
SSMLDR 0.7017 0.0764 0.1378 66 0.7858
FastTag 0.8610 0.0912 0.1649 81 0.8918

ML-PGD 0.4338 0.0623 0.1091 49 0.8677
SAE 0.9015 0.0926 0.1679 78 0.8918

AG2E 0.8247 0.0811 0.1476 71 0.8874
DRML 0.9023 0.0832 0.1524 81 0.8985
Ours 0.9152 0.0857 0.1567 81 0.9019

• ESP Game Dataset [31] developed an interactive system
between human and computer for data labeling, and the
interaction is designed like a game. The training and testing
numbers are 18, 689 and 2, 081 respectively. Moreover, the
number of candidate labels is 268 with 4.69 label on average.
• IAPRTC-12 Dataset [43] is used for MLL and cross-
language scenario. The categories such as landscapes, actions,
and animals are included. The total number of labels is 291
and the average label per instance is 5.72.
• SUN Dataset [4] is proposed for detailed scene recognition
and analysis tasks. There are more than 14, 000 samples
corresponding to 700 different categories. The number of
candidate labels is 102 and the average active label is 6.3.
• CUB Dataset [3] is a bird image dataset which involves
200 bird species. The numbers of training and testing split
are 4, 374 and 4, 468. There are 312 label candidates with
averagely 31.4 labels for each instance.
• AWA Dataset [44] is an animal with attribute dataset. The
total number of the animal images are 30, 000 corresponding
to 50 different animals. The average label is 15 selected from
a 85 label candidates. The range of the label value is [0, 100].

For AWA, CUB, and SUN dataset, we deploy VGG Net-
works [45] to obtain the visual features. The original extracted
features are 4, 096 dimensional vector for each instance. VGG
is pre-trained on ImageNet [46] and fixed in the whole pro-
cedure. We utilize 15 different visual descriptors for Corel5K,
ESP Game, and IAPRTC datasets, which are extracted by [47].

B. Experimental Setup

We pretrained C1(·) and C2(·) for several epochs, then
all the networks are jointly trained. When CR(·) becomes
stable, the most confident predictions are assigned as pseudo
labels to the corresponding samples. Meanwhile, the strategy
for assigning pseudo labels is slightly different across differ-
ent datasets. Specifically, for ESP, Corel5K, and IAPRTC-12

TABLE VI
ABLATION STUDY FOR RELATION LEARNING NETWORK

Networks Structure Pre Rec F1 N-R mAP

CON 1-layer 0.7593 0.1782 0.2887 101 0.6518
CON 2-layer 0.7818 0.1834 0.2971 101 0.6857
CON 3-layer 0.7832 0.1819 0.2952 102 0.6872
CON 4-layer 0.7830 0.1800 0.2927 102 0.6869

AVE 1-layer 0.7531 0.1683 0.2751 100 0.6683
AVE 2-layer 0.7792 0.1762 0.2874 102 0.6791
AVE 3-layer 0.7811 0.1781 0.2901 102 0.6854
AVE 4-layer 0.7821 0.1791 0.2915 102 0.6842

ADD 1-layer 0.7459 0.1613 0.2651 100 0.6435
ADD 2-layer 0.7482 0.1657 0.2713 101 0.6651
ADD 3-layer 0.7510 0.1654 0.2711 102 0.6686
ADD 4-layer 0.7550 0.1641 0.2696 102 0.6704

Ours 0.7918 0.1912 0.2994 102 0.7102

datasets, the pseudo label is binary (i.e., {0, 1}) based on 0.5
as the threshold. For the SUN dataset, the pseudo label is
illustrated by the combinations of {0, 0.33, 0.66, 1} to match
the original label assignments in ground-truth. For CUB and
AWA databases, the assigned label is the prediction results
from CR(·) since they utilize the continuous label value.

Multi-label prediction performance is evaluated in general
and zero-shot [2], [48] settings in our experiments. In the
general setting, the labeled and unlabeled samples are evenly
and randomly selected from the complete data points, where
each set has roughly half of the samples in the dataset. In
zero-shot experiment, there are no overlap in the labeled
and unlabeled sets. Considering the distribution shift is more
considerable than the general setting, it is more difficult for
keeping high performance. For zero-shot test, there are default
splits in AWA, CUB, and SUN datasets. We evaluate our
methods as well as other benchmark multi-label approaches.
The benchmark methods are briefly introduced below:
• Least Squares Regression (Regression) is a traditional
method which projects the feature space to label space based
on a matrix without nonlinear transformations.
• FastTag [25] is specifically designed for addressing noisy
and incomplete training samples. It designs two linear projec-
tors for completing missing labels and prediction respectively.
• Semi-Supervised Multi-Label Dimensionality Reduc-
tion (SSMLDR) [49] explores feature distribution structural
knowledge via a transformation matrix, and transfers knowl-
edges across labeled and unlabeled samples.
• Multi-Label with a Mixed Graph (ML-PGD) [20] reveals
the latent label interdependence via a novel hybrid diagram.
In the proposed graph, the nodes are the candidate labels and
the edges are the latent relations of different nodes.
• Semantic AutoEncoder (SAE) [50] utilizes linear au-
toencoder strategy for solving label prediction problem. The
encoder and decoder share the same weight to project the
feature space to label space, and then back to feature space.
• Adaptive Graph Guided Embedding (AG2E) [35] ex-
plores the potential of adaptive graph in MLL task. The
pairwise similarity between all data points are optimized.
Then, the graph is adaptively learned associated with other
weights to achieve the best performance.
• Dual Relation Multi-label learning (DRML) [17] proposed
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Fig. 3. Classification performance of C1(·), C2(·), and the relation network CR(·) as the training iteration increase, where blue and green lines indicate
C1(·) and C2(·), and CR(·) is represented by the red line. It shows that after around 150 iterations, our relation network could consistently outperform C1(·)
and C2(·), which demonstrates the effectiveness of the relation tensor as well as the relation network structure. We observed that the performance become
stable after 300 iterations while the precision and mAP slightly decreased, we assume this is due to overfitting issue and an early stop could be deployed for
solving it in other real-world practical applications.

0 0.5 1

0.4

0.6

0.8

P
re

ci
si

on

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

R
ec

al
l

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

F
1

0 0.5 1

40

60

80

100

N
on

-Z
er

o

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

m
A

P

Fig. 4. Parameter sensitivity analysis of α. α balances the weights between
C1(·), C2(·), and relation networks CR(·) (Eq. (12)). Our approach achieves
high and stable performance of α selection in the wide range (i.e., [0.1, 0.9]).
α = 1.0 denotes no losses for training CR(·). The result demonstrates
effectiveness of CR(·) and parameter insensitive of our framework.

a two-classifier structure to align the distribution shift between
labeled and unlabeled samples, and a relation learning network
is further designed to explore the label relations.

SSMLDR, ML-PGD, AG2E, and DRML are semi-
supervised methods. The labeled samples, their corresponding
labels, and the unlabeled instances are given in the optimiza-
tion procedure. Regression, FastTag, and SAE are supervised
baselines. We only provide the labeled samples to train the
model and the unlabeled samples are set as test samples. For
evaluation purposes, we mainly deploy the metrics in [47].
First, the precision and the recall are calculated. The harmonic
mean (F1-score, recall as well as precision) is also provided
for comprehensive comparison. The non-zero recall represents
the non-zero predictions in the results. In addition, we applied
the mAP (mean average precision) which is introduced in [20]
for convenient and overall assessment. Higher value represents
better predictions in all the metrics.

C. Multi-label Classification

The evaluations of the general setting are shown in Ta-
ble III. We could observe that SDRL considerably improves
the prediction results than other benchmarks. Specifically, our
approach achieves up to 3.0% performance improvements in
mAP metric. It also achieves the highest performance in almost
all metrics in most datasets. In addition, [20] provides a
more comprehensive and refined label sets for ESP Game and
Corel5K datasets. It increases the average number of labels in
Corel5K from 3.40 to 4.84 and the number of labels in ESP

Game from 4.69 to 7.27. We further tested the performance
(Table IV) and it also shows the high performance compared
with other methods.

D. Zero-shot Evaluation

We evaluated SDRL in zero-shot MLL setting. As intro-
duced above, the training and testing categories are non-
overlapped. Specifically, the samples still have the exact multi-
label candidates while the categories are different between
the labeled and unlabeled samples (e.g., zebra and horse). To
this end, the domain shift is more significant. We tested our
approach in AWA, CUB, and SUN databases. The databases
are assigned the default split of training and testing for zero-
shot setting. The comprehensive statistical summary is shown
in Table II.

E. Model Analysis

The relation network, CR(·), is one of the crucial modules.
To demonstrate the usefulness of CR(·), we show the training
curve of C1(·), C2(·), and CR(·) in Figure 3. It illustrates
the results of each network as the training iteration increases.
We observe that CR(·) considerably outperforms C1(·) and
C2(·), which denotes the effectiveness of CR(·). In addition,
there are two interesting phenomena. First, the performance
of C1(·) and C2(·) are higher in the first tens of iterations,
then CR(·) outperforms others eventually. We assume this is
mainly due to the natural lag characteristic of CR(·) since the
good training of CR(·) is based on the roughly correct label
predictions obtained from C1(·) and C2(·). Second, there is
a slight performance drop before the final stable status, we
conjecture this is the overfitting issue, extra cross-validation
or early stop strategies could solve this issue.

To further demonstrate the superiority of CR(·) over other
network structures, we utilize a conventional multi-layer clas-
sifier to replace CR(·). The input is the initial label predictions
from C1(·) and C2(·), and the output is the final prediction. We
tested three different structures. Concatenation (“CON”) di-
rectly concatenates the predictions together. Average (“AVE”)
obtains the average predictions. Addition (“ADD”) adds each
pairwise of the label predictions together, which could be
considered as a simplified version where all the elements in
the correlation tensor, TR, are equal, and the only functional
module is the fully connected network. This setting separates
the performance contribution of the correlation tensor and
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fast methods in all benchmarks.

the following fully connected network. The ablation studies
are illustrated in Table VI, where we tested 1, 2, 3, and 4
layer networks. From Table VI, we can see that the general
network structure is effective to slightly improve the perfor-
mance, while the performance is saturated when the network
achieves 3 or 4 layers. The result concretely demonstrates the
effectiveness of correlation tensor.

F. Image Annotation

Image annotation aims to recover the multiple tags from
the given images. We follow the zero-shot training/testing
split of SUN dataset which means the categories of the target
images are not existing in the optimization phase, and case

studies are shown in Figure 5. In Figure 5, different font
colors denote different prediction labels. We can see that most
of the predictions are correct, which denotes that SDRL is
capable of recovering multiple extra “missing” labels from
the given images, and only a few incorrect predictions exist.
This result further illustrates the robustness and effectiveness
of our approach.

G. Image Retrieval

In our experiment, image retrieval searching and retrieving
images from the test set based on a given label. We still follow
the zero-shot setting to make the task be more practical. In our
experiment, we first predict the multi-label vectors of all the
candidate images, then we rank the prediction scores based on
a target label (e.g., “working”) in Figure 6. Figure 6 illustrates
the retrieved samples in SUN database, green and red denote
correct and incorrect results. We can see that SDRL framework
is effective for retrieval scenario even if the target instances
are unseen in the training phase. This characteristic is more
feasible for practical applications.

H. Time Consumption

Time consumption is an important consideration for real-
world applications. We tested the time consumption of infer-
ring 2081 test samples from the ESP-Game dataset. Figure 7
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shows the time consumptions and our approach achieves com-
petitive speed compared with other baselines. This is achieved
by parallel computing based on the GPU acceleration.

V. CONCLUSION

We proposed a Semi-supervised Dual Relation Learning
(SDRL) method in multi-label scenario. SDRL is designed
to reveal the latent relations in given samples, including the
instance-level relations in feature space between labeled and
unlabeled data, and the label-level relations residing inside
each sample. A two-classifier domain adaptation structure
is deployed to effectively align the shifted feature distribu-
tions. Moreover, a relation tensor is proposed to efficiently
and effectively learn the label-level relations and obtains
more performance improvement without extra syntactical prior
knowledge. All modules have been jointly to achieve the best
performance. SDRL is evaluated on six benchmark databases
in four 4 various tasks. The experimental results have shown
that the performance had been significantly improved. More-
over, extensive ablation studies demonstrated the necessities
of all proposed modules and the case studies further illustrate
the robustness of our approach.
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