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Human Motion Segmentation via Velocity-Sensitive
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Abstract—Human motion segmentation (HMS) aims to seg-
ment a long human action video into a bunch of short and
meaningful action clips. Existing supervised learning approaches
require a considerable amount of data for well-training a model,
which may be costly in real-world scenarios. Most unsupervised
clustering methods cannot fully explore the temporal correlations
among human motions and it is hard to achieve promising
performances. In this work, we design a novel Velocity-Sensitive
Dual-Side Auto-Encoder (VSDA) for HMS tasks. Specifically,
a multi-neighbor auto-encoder (MNA) is proposed to extract
informative temporal features, which fully explores the local
temporal patterns of human motions. In addition, a long-short
distance encoding (LSE) mechanism is designed. LSE constrains
the encoded representations of close (short-distance) frames
becoming similar while the representations of far-away (long-
distance) frames becoming distinctive. Similarly, this strategy is
also deployed on the decoded outputs as the long-short distance
decoding (LSD) module. The proposed LSE and LSD guide the
learning process explicitly and implicitly to achieve the dual-
side structure. Moreover, we consider the energy variations in
the human motion data, and propose the velocity-sensitive (VS)
guidance mechanism for further model improvement. VSDA
leverages the temporal characteristics of human motion and
derives promising HMS performance. Extensive experiments and
ablation studies demonstrate the effectiveness of our VSDA
model.

Index Terms—human motion, unsupervised learning, auto-
encoder, energy-based

I. INTRODUCTION

Human motion segmentation (HMS) divides a long action
video into several short clips. Each clip has its own meaning.
The basic concept is shown in Fig. 1. For instance, one real-
world video usually contains hundreds of clips, most existing
classification or recognition methods [1] are designed for
dealing with clips containing only one single action. Therefore,
HMS methods are required for cutting the raw video into
several short clips for the down-streaming tasks. HMS is an
indispensable data pre-processing step for many motion/action
related tasks (e.g., motion analysis, action recognition, and
security surveillance).

HMS is a challenging task due to the complicated temporal
characteristics among the high-dimensional motion features
even in multiple views [2]–[5]. It mainly focuses on exploring
efficient and effective clustering-based approaches to gather
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correlated motion frames to segment in the unsupervised
learning scenario. Different with the static data, the dynamic
temporal correlations play a critical role for segmentation
tasks [6]. As a summary, there are two main difficulties
for handling HMS [6]. First, human motion data contains
complicated frame-level temporal correlations. Second, human
motion data contains complex dynamic patterns existing in the
whole motion sequence.

Effectively modeling successive temporal information is the
key factor for HMS. Based on the strategies of modeling
temporal information, existing motion analytical approaches
can be grouped in three categories [7]: 1) representation
learning based [8]–[10], 2) model based [11], and 3) temporal
proximity based [6]. Most existing HMS methods belong
to representation learning based strategy. They firstly derive
distinctive representations from original video samples. Then,
these representations are set as input for down-streaming
clustering algorithms (e.g., K-means [12] and Normalized
Cuts [13]) to obtain final segmentation results. To name a
few, a temporal constraint is utilized to obtain representations
for performance improvement [14]. Specific dictionaries are
designed to derive distinctive representations [15], [16]. Highly
correlated frames are considered to enhance the feature capac-
ities in [8], [17]. [18] proposed a graph based embedding strat-
egy. It updates graph representation dynamically and serves
for first-person video segmentation which is another important
application for temporal clustering. [19] introduced Dynamic
Graph Embedding (DGE) for event representation learning.
It jointly learns the graph and the graph embedding via an
iterative optimization strategy in the unsupervised manner.
[20] further explores the dependencies in long-range for more
distinguished frame representation learning.

Transfer learning strategy utilizes existing human motion
dataset as auxiliary or source information to guide the repre-
sentation learning on target data [21]. [22] introduced a multi-
mutual induced learning method. It extracts the frame-level
features from multiple network layers which achieves high
and stable performance. [23] further explores the diversity and
consistency of human related motion signals.

However, these algorithms have several drawbacks. First,
most of them use traditional optimization algorithms which
need high computational resources (e.g., eigen decomposi-
tion). Second, most approaches globally model the human
motion information while ignoring the trivial local details
among the temporal domain. Third, few existing algorithms
consider the temporal dynamic characteristic (e.g., motion
energy variations) to comprehensively guide the representation
learning process. As a result, these approaches are easy to
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Fig. 1. Human motion segmentation (HMS) focuses on segmenting a long motion video into many short and meaningful action clips (e.g., running, jumping,
and walking). Obtaining robust representations of temporal input is important to achieve accurate results, especially near the boundary of two adjacent clips.
The color bar represents the energy variations which is an important clue to facilitate temporal segmentation. Warmer color represents higher energy variation
during action; colder color means relatively low energy variation.

derive inaccurate segmentation results especially in action-
switch regions. They not only diminish the segmentation per-
formance, but also exert negative impacts on down-streaming
tasks and limits the potential usage of the algorithm in real-
world applications.

We designed a Velocity-Sensitive Dual-Side Auto-Encoder
(VSDA) framework to handle the above challenges for HMS.
Fig. 2 illustrates the framework of VSDA. A specifically de-
signed multi-neighbor auto-encoder (MNA) is first proposed,
where the input is a single frame and the reconstruction targets
are multiple neighbor frames of the input. By this way, the
local structural information will be preserved in the encoded
representations. In addition, a long-short distance constraint
is proposed. The insight is that the close frames (short-
distance) in time domain are highly possible belonging to
the same action, while the far-away (long-distance) frames are
supposed to be in different actions. To this end, the long-short
distance encoding (LSE) is utilized to pull the short-distance
representations together while separating the long-distance
representations. Similarly, the long-short distance decoding
(LSD) is further deployed on the decoded side. The LSE
and LSD guide the learning process explicitly and implicitly
to achieve a dual-side structure. Moreover, we consider the
energy variations during the human motions to fully explore
its dynamic characteristics. We assume the motion has high
velocity (energy variation) in the middle, while it has low
velocity in the beginning and ending parts. The high velocity in
the middle easily causes the inconsistent representations within
the motion, which should be clustered into the same segment.
These “velocity-sensitive” frames are crucial to improve the
model performance. Thus, we should pay more attention to the
frames with high energy variations. Specifically, we calculate
the energy variations to capture dynamic patterns as velocity-
sensitive (VS) guidance. Then, we utilize it to adaptively adjust
the proposed long-short distance constraint. To summarize, our
main contributions are list below:

• A multi-neighbor auto-encoder (MNA) framework is
designed. It captures the action information associated
with the neighbor frames to preserve the local temporal
patterns.

• The long-short distance objectives are explored on encod-
ing (LSE) and decoding (LSD) stages to achieve a dual-
side structure. It obtains stable representations of neigh-
bor frames while differentiating the representations of the

long-distance frames. The LSE and LSD guide the model
explicitly and implicitly to obtain robust representations.

• The human motion energy variation is considered as
velocity-sensitive (VS) guidance. Based on our previ-
ous auto-encoder framework, the VS module guides the
model focus on sensitive frames with high velocity. In
this way, the long-short distance constraint is adaptively
adjusted to achieve better segmentation results.

There are several advantages of our VSDA: 1) Both the local
(short-distance) and global (long-distance) temporal correla-
tions are well preserved and explored for high quality represen-
tation learning; 2) The motion energy factor is fully explored
to globally guide the representation learning, which considers
the temporal dynamic characteristics to model human motion
data; 3) All modules can be achieved concisely and efficiently,
which will be suitable for large-scale practical applications
without high computational cost. Extensive experiments are
conducted to show the model effectiveness.

Compared with our previous version conference paper [24],
we summarize the differences as follows: First, based on our
dual auto-encoder structure, we further consider the velocity
factor to fully explore the human motion data. It digs more
temporal dynamics and can be easily plugged into our previous
framework. In addition, we provide more model details as
well as the experimental analysis (e.g., time consumption
analysis, training process visualization, and extra ablation
study experiments). Extensive experiments on the modified
framework demonstrate the proposed VSDA obtains higher
segmentation performance than our conference version. We
organize the literature review in Sec. II, present our proposed
method in Sec. III, experimentally evaluate our model in
Sec. IV with relevant analysis, and draw the conclusions in
Sec. V.

II. RELATED WORK

Most existing methods for Human Motion Segmentation
(HMS) utilize temporal data clustering techniques. Besides,
our model is designed based on the auto-encoder structure.
To this end, we mainly introduce temporal data clustering and
auto-encoder related approaches for human motion analysis in
this section.
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Fig. 2. The framework of our proposed VSDA approach. Frame-level
features are extracted from the human motion samples. Then, the features
are set as input to the multi-neighbor auto-encoder (MNA). The long-short
encoding/decoding (LSE/LSD) strategies are applied as a dual-side structure to
guide the representation learning process explicitly and implicitly. By this way,
the similarity and distinctiveness between frames are learned and preserved
in the representations. The motion velocity (energy) based space mapping
weights are calculated to re-distribute the representation space and obtain the
robust representations. Finally, the obtained representations are forwarded to
a down-stream clustering algorithm (e.g., NCuts) for the final segmentation
results.

A. Temporal Data Clustering

Temporal clustering algorithms aim to segment long tem-
poral data into many short and rational clips. It can be widely
utilized in applications including NLP, speaker diarization, and
human motion segmentation. Hierarchical cluster analysis [25]
designs a dynamic kernel to align the temporal features for
clustering tasks. Semi-Markov K-means clustering [26] aims
to capture temporal features in time series data. [27] proposed
a Maximum-margin method which recognizes the position
and length of the short segments. A specific dictionary and
corresponding representations are jointly learned via a tempo-
ral subspace learning method with a regularization to extract
temporal information [16]. A non-local self-similarity learning
function is deployed to benefit temporal segmentation [20].
A dynamic graph embedding strategy is proposed to conduct
temporal segmentation in a sequence of images [19]. A transfer
learning mechanism is used to explore the human motion
knowledge from extra motion videos to boost the segmentation
performance [21]. A low-rank constraint is involved in the
optimization procedure to achieve the better results [8], [28].
To further explore the knowledge transferring from source
to target dataset, a subspace learning strategy in multi-level
is designed in [22], [23]. They leverage more fine-grained
information to improve the target performance. Graph data
explores connections across different samples or nodes [29]. A
novel graph-based constraint is proposed for motion segmen-
tation in the unsupervised learning scenario [18]. Basically,
these methods mainly use traditional optimization methods
which have high computational cost. In addition, most of them
globally model human motion patterns while ignoring the local
information. Our proposed VSDA framework employs both
global and local characteristics for learning valuable frame
representation. Further, our VSDA involves the motion energy

factor to adaptively adjust the learning process.

B. Auto-encoder for Human Motion

Auto-encoder structures designed for human motion anal-
ysis mainly focus on learning informative representations,
which are usually set as input for down-streaming tasks such as
classification and clustering. Auto-encoder based frameworks
are used for several applications such as action recognition and
human motion prediction. A deep auto-encoder is designed
for pose recovery via multi-modal feature extraction [30].
A convolutional auto-encoder is designed to learn human
motion manifolds in a unsupervised learning scenario [31].
Action forecasting can be handled by using a specific designed
conditional variational auto-encoder to make generation [32].
In addition, an auto-encoder for denoising in stacked manner
is wisely defined for action recognition [33]. However, these
approaches use the auto-encoder structure directly without
further enhancement. In this paper, we explore the tempo-
ral correlations with involving energy factor to develop the
velocity-sensitive dual-side auto-encoder (VSDA) for HMS.

III. METHODOLOGY

A. Prelilminary

We first introduce the setting of human motion segmentation
(HMS). Let X ∈ RT×f be the human motion input, where T
is motion sequence frame numbers and f is the feature dimen-
sion. Our Velocity-Sensitive Dual-Side Auto-Encoder (VSDA)
model aims to derive the valuable temporal representations
of X for each t (1 < t < T ). Next, the down-streaming
clustering algorithm, Normalized Cuts (NCuts) [13], is used
to obtain the final segmentation results. VSDA contains four
major components: 1) multi-neighbor auto-encoder (MNA)
which is the basic structure of our complete framework, 2)
long-short encoding (LSE) which is employed on the encoding
process to explicitly direct the representation learning, 3)
long-short decoding (LSD) which is symmetrically utilized
on decoding to implicitly enhance the learning part, 4) the
velocity-sensitive (VS) guidance which fully considers the
energy variations of human motion and adjusts the proposed
long-short constraint. The details of each component will be
introduced below.

B. Multi-Neighbor Auto-Encoder

Auto-encoder is an effective and widely used structure to
extract informative representations in the unsupervised learn-
ing scenario. It uses the encoding and decoding procedures
to obtain low-dimensional and informative representations.
However, conventional models focus on reconstructing the
raw input but cannot consider and preserve the temporal local
patterns for human motion sequence. The temporal local cor-
relation is crucial to achieve high segmentation performance in
HMS. Therefore, the learned representations should not only
contain the input information but also preserve the temporal
local patterns. To this end, we propose a MNA structure.
Specifically, the input is the feature of each single frame, while
the reconstruction targets are the multiple neighbor frames of



2022 4

Algorithm 1 The pesudo code of training VSDA algorithm.
Require: Input data X , number of training steps S
Ensure: Clustering results Y of motion sequence X

1: for each i ∈ [1, S] do
2: Encode X to obtain initial features X (e.g., obtaining

HoG features in our experiments)
3: Forward X into MNA Ee(·) and Ed(·), and compute

He and Hd through Eq. (1) and Eq. (2)
4: Add long-short distance constraints on both encoding

and decoding sides by Eq. (7) and Eq. (10)
5: Compute the motion energy patterns by Eq. (11) and

enhance the long-short distance constraint using VS
guidance by Eq. (12)

6: Jointly update the whole framework by optimizing
Eq. (13) to obtain He.

7: end for
8: Forward He into the down-streaming NCuts algorithm and

obtain final segmentation results Y
9: reture Y

the original input. Based on this training strategy, the learned
representation will contain the temporal local information for
the segmentation. The MNA contains two modules. First is a
single-frame encoder Ee(·) given by:

ht
e = Ee(X

t), (1)

and a multi-frame decoder Ed(·) given by:

ht
d = Ed(h

t
e), (2)

where Xt ∈ Rf is the t-th raw frame of X for t ∈
{1, 2, 3, ..., T}. ht

e is the representation from a hidden layer,
and ht

d is the recover results of Xt. Both Ee(·) and Ed(·)
are implemented by a linear mapping with ReLU activations.
To achieve the multi-neighbor reconstruction, the input frame
associated with its neighbor frames are assigned as the auto-
encoder loss. The MNA is formulated by optimizing the
following objective on t-th frame:

Lt
a =

t+w∑
k=t−w

∥ht
d −Xk∥2F, (3)

where w represents the scale for neighbor reconstruction. ∥·∥2F
is l2-norms. u and v are two given frames. At the head and tail
of the region of the given video, we explore the intermediate
frames to be reconstruction targets. Following this path, the ht

e

is directed to restore local motion knowledge from its neighbor
frames. The MNA objective function on the whole motion
sequence is given by

La =

T∑
t=1

Lt
a. (4)

We introduce our MNA by defining Eqs. (1)-(4). It is the
basic structure of our VSDA and obtains the initial temporal
features ht

e to lay a solid foundation for the following model
component. The other modules will be introduced based on
the MNA.

C. Long-Short Encoding

The MNA aims to preserve local temporal information
through a well-designed reconstruction strategy. However,
HMS also relies on the feature correlations to accurately
segment each motion frame. To this end, ht

e are supposed to
be as same as possible in the same action clip and vice versa.
We propose a long-short encoding (LSE) approach to improve
the distinctiveness of the learned representation. The insight is
straightforward that the frame-level ht

e which are close in the
temporal domain (short-distance) should be similar while those
which are far-away from each other motion (long-distance)
should be different. The LSE contains two constraints. The first
is short-distance constraint which is defined by the following
objective:

Ll =

T∑
t=1

t+s∑
k=t−s

∥ht
e − hk

e∥2F, (5)

where ht
e denotes the outputs from a hidden layer, and hk

e

are the neighbors of ht
e. s is the constraint length. Ll is

the objective function of the short-distance constraint. This
strategy enhances the local similarity. For example, if close
frames belonging to the same segment have large-scale vari-
ations, they will be easily segmented into several fractions
which results in low segmentation performance. Our short-
distance constraint reduces the variety and smooths the learned
representation to achieve better results.

On the other hand, in a long motion sequence containing
several segments, frames temporally far-away from each other
should be in different segments. The long-distance distinctive
constraint makes these features more distinctive. It is defined
by following objective:

Lg =

T∑
t=1

(

t+q+s∑
k=t+q

∥ht
e − hk

e∥2F +

t−q∑
k=t−q−s

∥ht
e − hk

e∥2F). (6)

The long-distance constraints of t-th representation are
summed together. q denotes the difference in long-distance
perspective of the t-th and the target frames. The outer
summation is the constraint of the whole motion sequence. The
long-distance constraint lets representations of the far-away
frames be more distinctive. It avoids the dispersive frames
from different segments being clustered together. For example,
some far-away frames may be similar such as “walking” and
“running” both contain a “standing” motion. They are easily
clustered together and damage the final performance.

The complete LSE is to maximize Lg and minimize Ll

simultaneously, which can be formulated as minimizing fol-
lowing objective:

Lh = Ll − θhLg, (7)

where θh is a trade-off parameter.

D. Long-Short Decoding

In LSE, we deploy constraints on hidden representations ht
e.

In the auto-encoder model, the ht
e is used to reconstruct the

raw input. Therefore, ht
d distribution could also influence the

learning results of ht
e. To this end, the long-short constraint on
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ht
d is proposed which helps to stabilize the training procedure.

The short-distance objective is below:

Lm =

T∑
t=1

t+s∑
k=t−s

∥hk
d − ht

d∥2F, (8)

where hk
d are the neighbors of ht

d with the constraint distance
s. In addition, the long-distance distinctive objectives are
shown below:

Ln =

T∑
t=1

(

t+q+s∑
k=t+q

∥ht
d − hk

d∥2F +

t−q∑
k=t−q−s

∥ht
d − hk

d∥2F). (9)

LSD is realized by maximizing Ln and minimizing Lm

which is shown below:

Lr = Lm − θrLn, (10)

where θr is a trade-off parameter.
The long-short strategies are simultaneously optimized to

achieve the dual-side structure. In this way, the representation
learning is enhanced explicitly and implicitly.

E. Velocity-Sensitive Guidance

The MNA, LSE, and LSD modules comprehensively ex-
plore the temporal correlations in motion sequence. How-
ever, they treat each frame equally and ignore the different
importance degrees of different frames. Specifically, human
motion data always has high energy variations (velocity) in
the middle, while has low variations in the beginning and
ending. The middle frames belonging to the same motion with
high velocity are more sensitive and unstable. They are easily
clustered into different groups and damage the performance.
These velocity-sensitive (VS) frames should be emphasized
to enhance the representation learning. To this end, we take
the motion velocity into account as guidance information for
our model. We compute the motion energy variations based
on velocity changes to capture the dynamic motion velocity
patterns. The energy of each frame is given by

et = log(
|Xt −Xt−1|+ |Xt+1 −Xt|

2
), (11)

where et is the energy vector derived for Xt based on
its neighbors. We take the summation on feature dimension
for et to obtain the scalar value Et. The energy vector
E = {E1, ..., ET } is the guidance knowledge to indicate the
importance degree of each frame. In this way, we enhance our
proposed long-short distance constraint by

L̂t
∗ = Et · Lt

∗, (12)

where Lt
∗ is t-th objective of L∗, where ∗ ∈ {l, g,m, n}. L̂t

∗
is the enhanced objective. Correspondingly, we have enhanced
L̂h and L̂r for Eq. (7) and Eq. (10), respectively. Leveraging
on the proposed VS guidance, the auto-encoder architecture
adaptively adjusts the constraint frame-by-frame to achieve
higher segmentation performance.

Our complete VSDA consists of the MNA, LSE, LSD, and
VS guidance modules. Each module can be described by La,

L̂h, and L̂r, respectively. The complete VSDA is realized by
optimizing the loss function shown below:

L = La + λhL̂h + λrL̂r, (13)

where λr and λh are trade-off parameters. In summary, VSDA
obtains informative structural information from the original
high-dimensional motion sequence. The learned representa-
tions ht

e, as the final features, are forwarded to the down-
streaming NCuts clustering algorithm for performance evalu-
ations.

F. Discussion

As our complete framework involves several components
in total, we supplement some discussions here to summarize
them. Our Velocity-Sensitive Auto-Encoder (VSAE) contains
DASE [24] and the newly extended velocity guidance mod-
ule. VSAE contains three main parts: multi-neighbor auto-
encoder (MNA), long-short encoding, and decoding constraint.
Concretely, the MNA regularizes the learning process during
the reconstruction by enforcing the hidden representation
construct multiple adjacent frames. The long-short encoding
focuses on the hidden representations by pulling (pushing)
local (non-local) frame features close (far-away) from each
other. It guides the learning explicitly as the learned hidden
representations will be used for downstream segmentation.
On the other hand, the long-short decoding is designed for
decoded representations with the similar functions above. It
guides the learning implicitly since the decoded representa-
tions are not used for segmentation but will affect feature
capacity of hidden representations. Please note that Eq. (3)
is the reconstruction loss between the decoded representations
and groundtruth. Eq. (8) is added on adjacent decoded repre-
sentations. These two terms serve similar functions but from
two different aspects. The extended velocity based module is
an extra part to involve energy information to further guide
the learning process for the basic DASE framework.

G. Clustering

After obtaining the representations ht
e, we deploy a clus-

ter algorithm to perform final segmentation. In this work,
we follow the setting of [8] and utilize Normalized Cuts
(NCuts) [13] clustering algorithm. Existing algorithms such
as LRR [34] and SSC [15] regarded the clustering graph
weights as (|He| + |H⊤

e |)/2. Nevertheless, the temporal data
always contains highly correlated within-cluster samples [35].
To handle the challenge, we explore the distance metric of [16]
to calculate the similarity. WG is built based on the metric
between the pairwise of the representations:

WG(i, j) =
H⊤

eiHej

||Hei||2||Hej ||2
. (14)

When WG is obtained, NCuts is used to get the segmenta-
tion results. We assume the number of clusters is given. We
summarize our whole framework in Algorithm. 1.
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Fig. 3. The samples of six human motion datasets in our experiments. They are MAD, UT, ChaLearn 2014, Weizmann, Keck, and ChaLearn 2016, respectively,
including single-subject and multi-subject interactive motions.

TABLE I
SEGMENTATION PERFORMANCE COMPARISON ON SIX DATASETS BASED ON ACC AND NMI METRICS.

Datasets MAD Keck Weizmann UT ChaLearn16 ChaLearn14
Methods ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

KMD [36] 0.3226 0.3914 0.3970 0.4702 0.4441 0.5289 0.5122 0.5108 0.4160 0.2946 0.5078 0.6270
KMS [37] 0.3541 0.4188 0.3510 0.4553 0.4081 0.5562 0.4712 0.5677 0.4331 0.3221 0.4523 0.5968
LRR [34] 0.2397 0.2249 0.4297 0.4862 0.3638 0.4382 0.4162 0.4051 0.3239 0.1423 0.4137 0.5033
SPE [38] 0.3639 0.4369 0.3886 0.4744 0.4127 0.5435 0.4477 0.4894 0.4066 0.2721 0.4359 0.5877
SSC [15] 0.3817 0.4758 0.3137 0.3858 0.4576 0.6009 0.4389 0.4998 0.3867 0.2108 0.4853 0.6788
OSC [14] 0.4327 0.5589 0.4393 0.5931 0.5216 0.7047 0.5846 0.6877 0.4025 0.3346 0.4759 0.7189
LSR [17] 0.3979 0.3667 0.4894 0.4548 0.5091 0.5093 0.5183 0.4322 0.3917 0.1973 0.5913 0.5817
TSC [16] 0.5556 0.7721 0.4781 0.7129 0.6111 0.8199 0.5340 0.7593 0.5414 0.6000 0.5373 0.7861
TSS [21] 0.4652 0.6987 0.4929 0.7342 0.6101 0.7112 0.5541 0.7114 0.5385 0.6410 0.3788 0.6602
LTS [8] 0.4833 0.7268 0.5128 0.7365 0.6155 0.7273 0.5629 0.7223 0.5359 0.5369 0.3734 0.5684

DSAE [24] 0.5548 0.7734 0.5753 0.7407 0.6199 0.7879 0.6006 0.7950 0.5905 0.6673 0.6055 0.8515
VSDA(Ours) 0.5606 0.7770 0.5804 0.7397 0.6287 0.7992 0.6203 0.8226 0.6007 0.6826 0.6291 0.8578

IV. EXPERIMENTS

A. Datasets

In our experiments, six real-world human motion datasets
are used to evaluate our model. They are collected in different
environments and contain various human actions including
single-subject action (e.g. “walking” and “running”) and multi-
subject interact actions (e.g. “hugging” and “punching”). We
introduce the dataset details as below and show a few action
samples in Fig. 3.

• Multi-Modal Action Detection Dataset (MAD) [39]
has human motions performed by 20 subjects collected
in RGB, depth, and skeleton modalities. All models are
captured synchronously at 30 fps. The RGB frames are
captured in 240×320 resolution with 35 actions per-
formed by each subject. In our experiments, we only use
the videos in RGB modality.

• UT-Interaction Dataset (UT) [40] has 6 types of mo-
tions including handshaking, pointing, pushing, hugging,
kicking, and punching. Each video lasts around 1 minute.

• Weizmann Dataset (Weiz) [41] includes 90 motion
samples including 10 motions such as running, walking,
and skipping. It is collected from nine subjects and each
subject performs each motion one time.

• Keck Gesture Dataset (Kect) [42] contains 14 different
gestures and motions from 3 subjects performing mili-
tary signals. It is collected by a fixed camera and the
human subjects perform motions in front of a simple and

static background. The RGB frames are collected with
640×480 resolution.

• ChaLearn 2014 [43] contains 14,000 gestures about the
vocabulary from 20 Italian sign gesture classes. It aims
to perform user independent continuous gesture spotting.
They are performed by several different users and used
to evaluate our model.

• ChaLearn 2016 [44] is a gesture dataset which has
47,933 gestures from 22,535 RGB-D motion recordings.
Overall, 249 gestures categories are conducted by 21
human volunteers. It can be used for segmenting and rec-
ognizing gestures from a continuous video. RGB videos
are used in our experiments.

B. Comparison Approaches

We compare our model with several competitive approaches
to illustrate the effectiveness of our approach. They include
some conventional clustering algorithms and several recently
proposed SOTA models for HMS. The details of comparison
methods as listed below.

• K-means (KMS) [37] aims to cluster each frame-level
feature using the nearest mean which minimizes the sum
of squres for within-cluster.

• K-medoids (KMD) [36] chooses targets as centers and
clusters samples with a distance between points defined
by a generalization of Manhattan Norm.
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Fig. 4. We visualize the segmentation results based on the representation
from different methods compared with ground truth. Different colors represent
different segments. First four methods have low accurate results with many
disorders, which is unacceptable for HMS tasks. Next four approaches achieve
much better results but still accompanied with fractions in each segment and
inaccurate segment boundaries. Ours obtains the best results without too many
fractions in each segment and more accurate boundaries.

• Spectral Clustering (SPE) [38] employs the similarity
matrix spectrum from the target samples to achieve
dimension reduction and obtain better clustering results.

• Low-Rank Representation (LRR) [34] effectively ob-
tains the sample global structure. It can deliver robust
segmentation results from corrupted data which contains
high-level outlier samples. The global structure of the
samples can be derived to obtain more robust segmenta-
tion results.

• Ordered Subspace Clustering (OSC) [14] proposes
an objective in temporal prespective during the learning
process which directly lets the temporal representations
be aligned in feature space.

• Sparse Subspace Clustering (SSC) [15] hypothesis
there is a potential dictionary of each data sample. It
proposes a sparse constraint to derive the coefficients of
the dictionary and learns the sparse features of frames.

• Least Square Regression (LSR) [17] groups highly cor-
related data samples together by encouraging a specific
grouping effect based on the Frobenius norm.

• Temporal Subspace Clustering (TSC) [16] explores a
learnable dictionary and temporal Laplacian regulariza-
tion to simultaneously get the informative representations
for motion signals.

• Transfer Subspace Segmentation (TSS) [21] develops
an approach based on transfer learning technique to ob-
tain knowledge from betweem source and target samples.
The auxiliary data information is leveraged to increase the
results.

• Low-Rank Transfer Segmentation (LTS) [8] designs a
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Fig. 5. The update trends of ACC and NMI for one sample over the iterations
of model training. We find the model consistently and stably converged based
on our proposed training strategy.

graph model for sequential signals in a transfer learning
fashion. A low-rank objective is proposed for higher
segmentation accuracy.

• Dual-Side Auto-Encoder (DSAE) [24] designs a novel
auto-encoder structure which comprehensively considers
the temporal correlations to enhance the representation
learning.

C. Implementation
HoG feature [45] is popular and efficient for representing

human motion information which can be conducted conve-
niently to obtain frame-level features for the whole motion
sequence. For all six datasets, we utilize the HoG encoding
to derive the initial feature sequence with 324-dimension
as VSDA model input. To avoid the inconvenience among
different datasets, we standardize the input data for different
datasets. Concretely, both Keck and Weizmann datasets con-
tain a single motion in each video, we concatenate 10 single-
action videos to obtain a long video following the same setting
in [27]. The videos in the MAD dataset have more than ten
actions. We remove the extra and reserve the first ten in each
recording. For the UT dataset, there are only six actions in
each recording. In this scenario, we keep it as it is. For the
ChaLearn2014 dataset, we choose videos containing ten or
more actions and reserve them into ten-action videos. For the
ChaLearn2016 dataset, we choose all the video samples with
more than 5 actions for consistent comparison.

The first three comparison methods, KMS, KMD, and
SPE, are conventional clustering algorithms. The next four
approaches, LRR, OSC, SSC, and LSR, are recently proposed
segmentation models. TSC is specifically designed for HMS.
All of them follow the common clustering experimental setting
and we directly evaluate their learning performance. TSS and
LTS are two HMS methods in the transfer learning scenario.
They aim to use auxiliary knowledge from a source dataset
to benefit the segmentation in target. Due to the setting
difference, we unify the experimental setting for TSS and LTS
to make a fair evaluation. Specifically, instead of involving
another dataset, we set the target and source as the same
to conduct their algorithm. In this way, the knowledge is
derived from the target dataset itself instead of another dataset.
DSAE follows conventional unsupervised setting, thus, we can
directly make comparison.
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Fig. 6. We visualize the t-SNE of the embeddings from the original data,
supervised learning model, and different unsupervised approaches. Compared
with others, the embeddings from our method are well clustered, which
demonstrates our model effectiveness.

D. Performance Analysis

We show qualitative analysis with more intuition to deliver
a comprehensive evaluation for this practical task.

1) Numerical Evaluation: We use two numerical evaluation
metrics in our work. Normalized Mutual Information (NMI)
and Accuracy (ACC) [46]. They are formalized by using
following equations:

ACC =
∑n

i=1
δ(si·map(ri))

n , (15)

NMI =

∑
i,j nij log

nnij
ni+n+j√

(
∑

j nj+log
n+j
n )(

∑
i ni+log

ni+
n )

, (16)

where map(ri) means the permutation mapping. The higher
the value of NMI and ACC the better the performance.

The segmentation performances are illustrated on Table I.
First three conventional clustering algorithms perform low in
both ACC and NMI, since these strategies are not designed
for handling human motion signals. The next four recently
proposed approaches are representation based clustering al-
gorithms. They still cannot obtain the best results. The TSC
algorithm is specifically proposed for HMS and has promising
results. Our model outperforms it in most scenarios. TSS
and LTS are transfer learning based approaches. Nevertheless,
if we adopt the evaluate setup for fair comparisons with
our model, they cannot achieve better results. The detailed
setting is introduced in the Implementation section. VSDA
fully considers the temporal correlative patterns and achieves
promising results, however, it ignores the dynamic motion
characteristics. Our VSDA explores the temporal correlations
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Fig. 7. Time consumption comparison. We find our method is faster than some
other comparison approaches. Compared with several high-speed algorithms
(e.g., KMS, KMD), ours achieves much better performance.

and dynamic motion patterns simultaneously to obtain the best
performance.

In Fig. 5, we visualize the ACC and NMI variations over
model training iterations for one sample as shown. We notice
that both NMI and ACC increase as the number of iterations
goes up which means our proposed model works well during
the training process. Further, near 100 iterations, the perfor-
mances tend to be stable. These observations demonstrate that
our proposed model is robust and effective to improve the
clustering performance. Another important measurement of the
HMS model capacity is time consumption.

2) Time Consumption: In Fig. 7, we compare the time
consumption of the representation learning phase based on
both our approach and the other approaches on the MAD
dataset. We calculate the total processing time for 40 motion
sequences in MAD. We observe that KMS, KMD, SPE, OSC,
and LSR achieve very fast clustering, however, their segmenta-
tion performances are low. Our approach is more efficient than
several competitors like TSS, LTS, and TSC. These methods
require the iterative optimization strategies associated with
computational costly steps such as eigen-decomposition. This
leads to the inefficiency optimization procedure. Although
our approach also needs to optimize the weights of the
auto-encoder, the efficient gradient descent associated with
parallel computing could significantly improve the speed of
our model. Further, the conventional approaches and opti-
mization methods will suffer from higher dimensional motion
features. However, our method can be utilized efficiently on
high-dimensional data with controllable time consumption.
Please note, since our work focuses on temporal representation
learning instead of the downstream segmentation, our time
consumption comparison with other methods only considers
the representation learning step. Both our model and other
methods use the same downstream clustering algorithm for
fair experiments.

3) Comparison with Supervised Learning: Our model is
executed in the unsupervised learning scenario without frame-
level label information. To show our model effectiveness, we
further compare our VSDA with a basic supervised model.
Specifically, we use the feature of each frame as training
data with the corresponding action category as label. We train
a simple linear classifier. Then, we extract features of the
last hidden layer for NCuts to obtain segmentation results.
We follow the leave-one-subject-out strategy to evaluate the
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TABLE II
ABLATION STUDY ON HUMAN MOTION DATASETS

MNA Short-En Long-En Short-De Long-De VS Chalearn16 MAD Kect Weizman UT Chalearn14
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

× ✓ ✓ ✓ ✓ ✓ 0.5664 0.6537 0.5249 0.7263 0.5304 0.7199 0.5749 0.7298 0.5636 0.7660 0.5899 0.7802
✓ × ✓ ✓ ✓ ✓ 0.2637 0.2784 0.2368 0.3305 0.1910 0.2246 0.3210 0.4005 0.4911 0.5382 0.5013 0.6275
✓ ✓ × ✓ ✓ ✓ 0.5192 0.6409 0.4901 0.7427 0.4825 0.7306 0.5463 0.7407 0.5738 0.7826 0.5579 0.7927
✓ ✓ ✓ × ✓ ✓ 0.5751 0.6585 0.5388 0.7605 0.5714 0.7365 0.6142 0.7803 0.6112 0.8048 0.5812 0.8241
✓ ✓ ✓ ✓ × ✓ 0.5703 0.6498 0.5459 0.7598 0.5733 0.7428 0.6087 0.7717 0.6095 0.7994 0.5936 0.8241
✓ ✓ ✓ ✓ ✓ × 0.5905 0.6673 0.5548 0.7734 0.5753 0.7407 0.6199 0.7879 0.6006 0.7950 0.6055 0.8515

✓ × × ✓ ✓ ✓ 0.3832 0.5010 0.3338 0.4870 0.3580 0.4836 0.3547 0.5823 0.4697 0.5239 0.4792 0.6033
✓ ✓ ✓ × × ✓ 0.5524 0.6592 0.5234 0.7437 0.5322 0.7538 0.5610 0.7269 0.5597 0.7423 0.5234 0.7786
✓ × ✓ × ✓ ✓ 0.2419 0.2535 0.2987 0.3042 0.2550 0.2479 0.1945 0.2495 0.2909 0.2761 0.3081 0.3579
✓ ✓ × ✓ × ✓ 0.5058 0.6427 0.4981 0.7346 0.4900 0.7361 0.5324 0.7019 0.5804 0.7735 0.5661 0.7980

✓ ✓ ✓ ✓ ✓ ✓ 0.6007 0.6826 0.5606 0.7770 0.5804 0.7397 0.6287 0.7992 0.6203 0.8226 0.6291 0.8578

TABLE III
SUPERVISED METHOD (LINEAR CLASSIFIER) V. VSDA

Methods Supervison Keck MAD Weiz
ACC NMI ACC NMI ACC NMI

Classifier Yes 0.3855 0.4349 0.3976 0.4835 0.5081 0.5942
VSDA No 0.5804 0.7397 0.5606 0.7770 0.6287 0.7992

models on three datasets. Table. III shows their performance
comparisons. We conclude the supervised method cannot
outperform our proposed model. Our VSDA has better results
in the unsupervised scenario without high labeling costs.

4) Segmentation Visualization: The segmentation results
are illustrated in Fig. 4. Various colors means various motion
clips. LSR and LRR results are low since there are fragments
among the whole video since they ignore the temporal similar-
ity and distinctiveness between different frames belonging to
the same or different actions. Time steps belonging to the same
segment are easily separated. Compared with the groundtruth
label, it is hard to recognize the boundary of each cluster
and unacceptable for HMS tasks. SSC and OSC are able to
obtain more rational results for partial sequences with clearer
segments boundaries. However, for those motion signals with
the rhythmed patterns (e.g. repetitive motion), there are still
many fragments in their results. Because of ignoring the
temporal connections, the overall results of these two methods
are still unsatisfactory. TSC has better performance with clear
cluster boundaries and more accurate segments. However,
there are still many fragments and the boundaries are blurry.
LTS and TSS have better results with less redundant fragments,
but they always make mistakes about recognizing boundaries.
DSAE performs promising results. Our current model takes the
energy variation into account and obtains the best segments.
Specifically, compared with ground truth, our model obtains a
more accurate segmentation boundary than DSAE.

5) t-SNE Visualization: We visualize the learned repre-
sentations by utilizing t-SNE [47] approach in Fig. 6. The
visualized sample is picked from the Keck dataset and different
colors represent different clusters. The visualization includes
the original data, the representation from five competitive
approaches, the supervised method, and our VSDA. Compared
with other approaches, our embeddings are well clustered

without much disorder. It is worth to note that even if our
model achieves promising results yet we can still find some
inconsistencies in the t-SNE plot (e.g., in “Ours”, the features
in light blue are not clustered perfectly with some separations).
These separated features are most likely caused by some
inaccurate clustering around the boundary of adjacent motion
clips. Like shown in Fig. 4, our method has generally decent
results but with few inaccurate fragments. However, compared
with other methods, ours generally obtains the most reasonable
segmentation results.

E. Ablation Study

Our proposed VSDA consists of MNA, LSE, LSD, and
VS guidance modules. Ablation studies we explored here is
to demonstrate the usefulness of the proposed modules. The
ablated model results for all datasets are shown in Table. II.
Our integrated framework can be separated into different par-
titions based on both single module and module combinations.
Specifically, for each column, “MNA”, “En”, “De”, “Short”,
“Long”, and “VS” represent multi-neighbor auto-encoder,
encoding, decoding, short-distance constraint, long-distance
constraint, and velocity-sensitive guidance, respectively. For
all the ablation tables, the upper block contains ablated models
with removing each single module. The middle block contains
ablated models with removing module combinations simulta-
neously. The lower block is our complete framework.

According to the ablation results from all tables, we make
conclusions as: 1) For the upper block (removing single
module), encoding constraint is more important than decoding
constraint as the encoding constraint regularizes the model
explicitly while decoding constraint is in an implicit way. The
performance drops a lot for both ACC and NMI, especially
short-distance encoding. However, the decoding constraint also
improves the model performances which is also a necessary
component. On the other hand, we can find the short-distance
constraint provides a reliable foundation for representation
learning, while the long-distance constraint further increases
the model capacity. 2) For the middle block (removing mod-
ule combinations), the results show that encoding and short
constraint are generally more important than decoding and
long constraint. This observation is consistent with that in the
upper block. 3) We conclude the proposed constraint should
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be used in a pairwise fashion and they can jointly improve
the learning performance. 4) The ablated model by removing
“MNA” is shown in the first row, which demonstrates the
necessity of our multi-neighbor auto-encoder. 5) Compared
with our basic version in the last row of upper block, the
newly proposed velocity-sensitive component further boosts
the final performance and our complete model achieves the
highest segmentation results.

F. Future Work Discussion

The transformer network architecture dominants the deep
learning field based on powerful self-attention mechanism. It
globally models the dependency of the sequential data which
is also expected to achieve higher learning performance for
temporal segmentation task. Since this work mainly aims
to involve a velocity module to enhance our previous auto-
encoder structure, we leave the exploration of transformer
model in our future work. In addition, the effective hand-
crafted HoG feature is used in our work. This feature is
extracted by considering the visual characteristic based on
the frame image itself. Nowadays, using pretrained large-scale
deep model to extract feature obtains promising performance.
However, in this way, the extracted features are always relevant
to semantic information. It may not help for the temporal
segmentation which requires more internal patterns of a given
temporal sequence. How to effectively employ pretrained deep
model is another valuable point to explore in our future work.

V. CONCLUSIONS

We design a Velocity-Sensitive Dual-Side Auto-Encoder
(VSDA) model for human motion segmentation (HMS) in an
unsupervised scenario. A multi-neighbor auto-encoder (MNA)
is employed for getting local structural knowledge. A long-
short encoding (LSE) strategy is utilized on the learned
representations to leverage temporal correlations explicitly.
Similarly, the long-short decoding (LSD) is symmetrically
employed on the decoding part to guide the model implicitly.
The novel proposed velocity-sensitive (VS) guidance mecha-
nism is used to enhance the dual-side constraint for further
model improvement. Experiments based on six real-world
human motion datasets show the effectiveness of our VSDA.
A comprehensive ablation study proves each component in our
model is effective and indispensable for achieving the highest
performance. Besides, we also provide several model analyses
including the segmentation visualization, t-SNE plot, and the
time consumption comparison.
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[43] S. Escalera, X. Baró, J. Gonzalez, M. A. Bautista, M. Madadi, M. Reyes,
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