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Multi-label learning recovers multiple labels from a single instance. It is a more challenging task compared

with single-label manner. Most multi-label learning approaches need large-scale well-labeled samples to

achieve high accurate performance. However, it is expensive to build such a dataset. In this work, we propose

a generic multi-label learning framework based on Adaptive Graph and Marginalized Augmentation (AGMA)

in a semi-supervised scenario. Generally speaking, AGMA makes use of a small amount of labeled data as-

sociated with a lot of unlabeled data to boost the learning performance. First, an adaptive similarity graph

is learned to effectively capture the intrinsic structure within the data. Second, marginalized augmentation

strategy is explored to enhance the model generalization and robustness. Third, a feature-label autoencoder

is further deployed to improve inferring efficiency. All the modules are jointly trained to benefit each other.

State-of-the-art benchmarks in both traditional and zero-shot multi-label learning scenarios are evaluated.

Experiments and ablation studies illustrate the accuracy and efficiency of our AGMA method.
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1 INTRODUCTION

In real-world applications, one object could relate to tens or hundreds of semantic descriptions
or attributes. For instance, an image illustrates, “It is a sunny day with blue sky and a lake/water

nearby.” This image contains multiple labels (i.e., sunny, blue sky, and water) selected from a large
number of candidate labels. Compared to single label classification task, multi-label tasks assume
multiple labels exist in each instance [2, 5, 19, 21, 43]. It is a more challenging task. First, the
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available datasets (e.g., SUN [40], CUB [47], and AWA [25]) are relatively small. Since multi-label
data collection and labeling procedures are labor intense and expensive compared with the
single-label setting. In addition, multi-label datasets suffer from high-level label noise due to the
subjective nature of the labels (e.g., hot, warm, and stressful). It is hard to obtain consistent label
results since different people hold different opinions. Third, the labels in most datasets follow a
long-tail distribution. It means that some “common” labels (e.g., blue sky, outdoor, and trees) are
much more prevalent than “rare” labels (e.g., fight and fire). For instance, the SUN dataset has
14, 340 samples in total. The most common label (i.e., Man-made) shows up 8, 089 times, while the
rarest label (i.e., Fire) only shows up 73 times. The significant unbalanced training samples could
negatively affect the learning performance. More sophisticated and specifically designed models
are required for multi-label learning tasks.

To this end, generating such multi-label datasets is a challenging and expensive task. However,
relevant and unlabeled data are easy to obtain. Based on this, semi-supervised learning [62, 63]
is a practical solution to enhance the learning performance by exploring unlabeled samples.
From all the various semi-supervised strategies, graph-based approaches [56] have attracted
great attention due to their high performance. However, there is a major drawback. These
approaches rely heavily on a high-quality similarity graph and ground-truth labels. The graph is
generated based on the original sample representation which could be influenced by noise and
the configurations of the similarity metrics. These factors could significantly affect the graph
generation and decrease the final performance. Previous works exploited adaptive graphs to
handle the noise sensitivity issue [13, 31, 32, 36, 38]. [59] proposed an error correcting output
correcting scheme to achieve the multi-class heterogeneous domain adaptation. [24] learned a
low-rank kernel strategy which eliminates the noise and enhances the representation ability.
[22] proposed a reliable graph learning strategy. It obtains robust graphs by adaptively removing
errors and noise from the original samples. [23] mapped the data into a higher dimensional
space and deployed a multiple-kernel-based algorithm for recommendation system. However,
most of the aforementioned approaches mainly handle the single-label classification tasks, which
ignore the unique challenges of multi-label setting such as the “long-tail” label distribution
issue.

Augmenting samples from the auxiliary domain is a promising direction for multi-label learn-
ing. Marginalized Corrupted Features (MCF) is an effective and efficient feature augmentation
strategy. MCF “corrupts” existing samples and “generates” infinite artificial samples for model
training [33]. It is specifically designed for the situation which only limited training samples are
available. More details are introduced in [34]. [9] proposed a marginalized Denoising Auto-

encoder (mDAE) approach for non-linear representation learning. mDAE achieves similar or even
better performance with much fewer training samples. [27] proposed a Regularized Marginalized
Cross-View learning framework with mDAE, which effectively improves the model robustness.
However, these methods either focus on representation learning tasks or supervised classification
tasks which cannot effectively explore unlabeled data.

In this article, a novel and generic multi-label learning framework via Adaptive Graph and

Marginalized Augmentation (AGMA) strategy in semi-supervised scenario is proposed. The
framework is shown in Figure 1. The core insight is jointly propagating the labeled and unlabeled
data by an adaptive graph and seeking an effective and robust visual-label encoder with marginal-
ized feature augmentation strategy. Such two strategies could assist each other to enhance the final
performance. The contributions are listed below:

—An adaptive graph is proposed to explore the latent correlations of labeled and unlabeled
samples. It is jointly updated with other components to obtain the best performance.
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Fig. 1. Framework of AGMA approach. A visual-label encoder, P , maps data from visual space to label space.
An adaptive affinity graph, S , is adaptively optimized based on both label space and feature space, which
also explores the pairwise latent connections across both labeled and unlabeled data. A marginalized feature
augmentation strategy is further deployed to extend the feature space and enhance the model robustness.
The predicted label matrix F , the adaptive graph S , and the encoder P are jointly optimized which helps the
model to obtain the best and reliable performance.

—A feature-label autoencoder is proposed to project the samples between label space and fea-
ture space. It fully explores the feature-label connection and could reduce the computational
cost in the testing stage.

—A marginalized feature augmentation strategy is deployed which extends infinite samples
from the limited samples and further improves the model robustness.

—An optimization approach is designed to solve all variables. Five datasets are deployed in
the experiments and the results illustrate the efficiency and effectiveness of the model.

AGMA is an extension of our previous work [48]. There are three-fold modifications to improve
the performance. First, we deploy an autoencoder strategy to directly project the samples between
feature space and label space. It avoids the negative influence from the uncontrollable latent sub-
space of [48]. Second, a marginalized augmentation approach is designed to extend the feature
distribution for further improving the performance. Third, our approach is efficient in inferring
step, since our model is able to project the new samples from feature space to label space without
extra optimization process. Extensive experiments indicate that AGMA achieves better perfor-
mance. In the rest of the article, Section 2 introduces related works including semi-supervised and
multi-label learning. Section 3 introduces our model. Experiments and analysis are presented in
Section 4. Conclusion is provided in Section 5.

2 RELATED WORK

2.1 Multi-Label Learning

Multi-label learning predicts multiple labels from a single instance. It is a more practical and
potential classification task for a large number of real-world applications, e.g., video concept
recognition [42], image annotation [2], and text classification [15]. One straightforward solution
for multi-label learning is utilizing multiple single-label learning classifiers to recover each label
individually [2]. However, the latent correlations between labels are not considered in this strategy
(e.g., blue sky usually show up with outdoor). Label relation plays an important role for multi-label
learning [57]. [16] designed a contextual merging step based on the output of each classifier to
leverage the correlations. [55] handles the missing label problem via learning the semantic struc-
tural information to build the label correlations. It projects samples to the semantic space with an
effective semantic descriptor. [51] learned the labels as well as the correlations simultaneously in
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the training stage for multi-view scenario. [58] designed a dependence maximization strategy for
multi-label dimension deduction based on Hilbert–Schmidt independence criterion. [8] proposed
a non-negative matrix factorization to obtain robust prediction performance. [29] proposed a
model which automatically identifies easy and hard prediction samples. It then uses the obtained
easy samples to enhance the prediction of hard samples. However, most of these approaches
are still in supervised learning manner which cannot perform well in the training data shortage
situation.

2.2 Semi-Supervised Learning

Semi-supervised learning utilizes a small-scale well-labeled samples associated with a large-scale
unlabeled samples to improve the learning performance [7, 36, 49, 50, 62, 63]. There are vari-
ous ways to achieve semi-supervised learning. A detailed introduction can be found in [62]. Its
essential insight is to explore the feature distribution knowledge from unlabeled samples and im-
prove the effectiveness of down-stream tasks. [36] filters the training sets and obtains a model
which is independent to the training initialization procedure. [60] utilized the hashing and trans-
fer learning strategies to achieve transfer hashing for privileged information. It could handle data
sparsity issues in deep learning framework. [61] proposed a self-supervised mechanism which
contains two losses to achieve semi-supervised learning scenario. [20] utilizes a differentiable sur-
rogate of the non-differentiable Hungarian algorithm to achieve the view-specific alignment. [41]
effectively utilizes the knowledge from both feature and label space. The pairwise sample assign-
ments are minimized across each data point. Graph-based approach attracts great attention due
to its high accuracy and stability. It deploys an affiliate graph to explore the latent data structure
residing in both source and target samples. A Gaussian random field and a harmonic function
were proposed to improve the performance [63]. Although graph-based methods achieve high
performance, there is a main drawback. Specifically, the classification performance heavily de-
pends on the quality of the affiliate graph, and it is difficult to always obtain an effective affiliate
graph. Moreover, most graph generation methods are parameter sensitive. Thus, the same set of
graph generation configurations could not achieve the best performance for other resources. An
adaptive affiliate graph is proposed in [28] which is adaptively optimized in the training stage.
[35, 37] deploy graph optimization strategy for unsupervised feature selection and representation
learning tasks. [52] extended this approach to image and video scenarios. [48] deployed affili-
ate graph associated with subspace learning to learn more distinctive feature representation and
helped the adaptive graph learning. However, most of the graph-based approaches still rely on
the similarity measurement in either the feature space or a learned subspace. The performance of
this strategy is easily affected by noise and outliers. Moreover, these approaches ignore utilizing
the latent label correlation knowledge residing inside the samples which is crucial for multi-label
setting.

3 THE PROPOSED APPROACH

3.1 Preliminary

The notations utilized in this article are summarized in Table 1. Scale values or vectors are
represented by lowercase letters and the matrices are illustrated by uppercase letters. Xl ∈ Rd×nl

is the feature matrix of labeled data, where Xl = [x1,x2, . . . ,xnl
]. d is the feature dimension, nl

is the sample number. xi ∈ Rd represents a feature vector of the i-th sample. Yl ∈ Rdl×nl is the
ground truth label matrix ofXl , where dl is the label dimension. Yl = [y1,y2, . . . ,ynl

] andyi ∈ Rdl

represents a label vector. Similarly, Xu ∈ Rd×nu is the feature matrix of unlabeled data. Fl and
Fu are the predicted label matrix of Xl and Xu . Fl = [f1, f2, . . . , fnl

] and Fu = [f1, f2, . . . , fnu
].
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Table 1. Symbol Description Table

Symbol Description

xi , x j Feature vector of i-th and j-th samples.
Xl , Xu Feature matrix of labeled and unlabeled samples.
X X = [Xl ,Xu ].

fi , fj Predicted label vector of xi and x j .
Fl , Fu Predicted multi-label of Xl and Xu , and F = [Fl , Fu ].
yi , yj Groundtruth label vector of xi and x j .
Yl Groundtruth label of Xl .
d , dl Dimensions of feature space and label space.
S Adaptive affinity graph.
LS Graph Laplacian matrix of S .
P Visual-Label Encoder, and Label-Visual Decoder is P�.

nl , nu Number of labeled and unlabeled samples, n = nl + nu .
λ, μ Trade-off parameters.
δ Gaussian distribution variance.

In semi-supervised multi-label setting, Xl , Yl , and Xu are given. The goal of our approach is to
obtain Fu as accurate as possible.

Conventional semi-supervised multi-label learning methods obtain label propagation based on a
pre-defined affiliate graph [18]. This approach assumes that the pairwise samples which have high
similarity scores should have similar multiple labels. In this scenario, the pre-defined affiliate graph
directly determines the recovered label. However, the quality of the affiliate graph is easily affected
by several aspects including different similarity metrics (e.g., Euclidean and Cosine distance), the
metric configurations, and the feature/label noise. To avoid this limitation, adaptive graph-based
methods are explored to automatically obtain the best graph.

Our previous work [48] learns a low-dimensional subspace to obtain distinctive representations.
An adaptive affinity graph is jointly updated based on the representations. The main objective
function is shown below:

min
F ,S,P

n∑
i, j=1
‖ fi − fj ‖22si j + μ

n∑
i, j=1
‖Pxi − Px j ‖22si j ,

s.t. Fl = Yl , S ≥ 0, S1 = 1,
(1)

where S ∈ Rn×n is the similarity matrix across all samples, each element si j is the obtained simi-
larity score between xi and x j . n = nl + nu . The constraint S1 = 1 is included, where 1 is a vector
of ones. It indicates the sum of the elements in each row is 1. This constraint controls the scale
of S and avoids a trivial solution (i.e., S = 0). The negative influence from outliers could also be
suppressed. In addition, instead of calculating the pairwise distances in the original feature space
(i.e., ‖xi − x j ‖22si j ), a linear projection P ∈ Rr×d is deployed to project the original feature vectors

to a low-dimensional subspace (i.e., ‖Pxi − Px j ‖22si j ). Fl = Yl since Fl is the given ground truth.
F , P , and S are simultaneously optimized. By this way, S is adaptively learned based on both the
feature similarity and label similarity to achieve higher prediction accuracy.

There are several drawbacks in [48] may still limit its potential performance. First, it is difficult
to guarantee that the learned subspace can obtain the most distinctive representations. High level
noise could reduce the quality of the subspace. Second, the approach does not well solve the limited
training data challenge. Third, if new/unseen samples should be predicted in the testing stage, the
whole optimization procedure has to be operated again to obtain the prediction result, F . To this
end, this pipeline is not efficient for large-scale applications.
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3.2 Visual-Label Encoder via Adaptive Graph

To solve the aforementioned drawbacks, we improve the model by directly projecting the data
from feature space to label space. In our new model, a projection P is trained to output the label
prediction as shown below:

fi = Pxi . (2)

By this way, the connection between features and labels could be further tightened and it avoids
the potential negative influence from the arbitrary subspace. Furthermore, we assume the pre-
dicted label vector could still recover the original features, inspired by the work of semantic au-
toencoder [14], we let the encoder share the same weight as P . This strategy could further help
the model to reduce the computational cost and mitigate overfitting. To this end, we have

xi = P� fi . (3)

By replacing the second term in Equation (1) with Equations (2) and (3), we can have the objec-
tive function shown below:

min
F ,P,S

n∑
i, j=1
‖ fi − fj ‖22si j + μ

n∑
i=1
‖ fi − Pxi ‖22 + λ

n∑
i=1
‖xi − P� fi ‖22 ,

s.t. Fl = Yl , S ≥ 0, S1 = 1,
(4)

where P projects visual feature to the label/semantic space and P� maps the predicted labels back
to the original feature space. The second and the third term calculate the encoder error and decoder
error respectively. λ and μ are the trade-off parameters which balance the weight between label
space and visual space. S is initialized as a dense matrix in the optimization process. It gradually
converged to a sparse matrix due to the constraint S1 = 1. The sparsity of S is influenced by the
data distribution of different datasets.

To make Equation (4) more compact and efficient to solve, we rewrite Equation (4) as a matrix
format which is shown below:

min
F ,P,S

tr (FLSF
�) + μ‖F − PX ‖2F + λ‖X − P

�F ‖2F ,
s.t. Fl = Yl , S ≥ 0, S1 = 1,

(5)

where tr(.) indicates the matrix trace calculation which is the sum of the main diagonal elements.
LS ∈ Rn×n is the Laplacian matrix. LS = D − S where D ∈ Rn×n and Dii =

∑n
i=1 si j . X = [Xl ,Xu ]

and F = [Fl , Fu ].

3.3 Generic Encoder Learning via Marginalized Augmentation

Long-tail label distribution is common in multi-label learning, which means some labels only have
very limited training samples. This challenge also suppresses the learning performance. To address
this problem, we explore the idea of MCF [33]. It effectively extends/enlarges the feature distribu-
tion by corrupting the existing training examples with a fixed noise distribution. By this way, the
feature distribution gaps between samples could be filled up.

Given a feature vector xi ∈ Rd . We let xk
i (k = {1, 2, . . . ,d }) represent the value of each dimen-

sion of xi . MCF assumes that the augmentation distribution factorizes over all dimensions of xi . It
considers each individual distribution as a combination of a set of natural exponential family:

p (x̃i |xi ) =
d∏

k=1
PE (x̃k

i |xk
i ;ηk ), (6)

where x̃i is the corrupted version of xi . ηk is the augmentation distribution parameter on the
dimension k . MCF constrains E[x̃i ]p (x̃i |xi ) = xi , where E(x̃i ) is the expectation of x̃i . It means that
the expectation of the augmented features should be the same as xi .
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In our model, all the samples from labeled and unlabeled sets are utilized to obtain the corrupted
features. Given the whole samplesD = [(xi , fi )]n

i=1, assume we augment the samples M times and
obtain the augmented features x̃im (m = 1, 2, 3, . . . ,M). Then, our model can utilize these features

D̃ to train any classification models by minimizing the equation below:

L (D; Θ) =
n∑

i=1

1
M

M∑
m=1

L(x̃im , fi ; Θ), (7)

where Θ is the model parameters with x̃im ∼ p (x̃im |xi ), and L(xi , fi ; Θ) is the objective function of
a proposed model. However, such approach is not elegant and could increase the computational
cost significantly. To this end, the limiting case in which M → ∞ can be used for Equation (7) as
follows:

L (D; Θ) =
n∑

i=1
E[L(x̃i ,yi ; Θ)]p (x̃i |xi ), (8)

where E(.) is the expectation of the objective value. Minimizing Equation (8) under the corruption
model is the crucial module for MCF. The solution of Equation (8) relies heavily on the objective
function and the augmentation distributions. Coincidentally, for projections that employ expo-
nential or quadratic objective function, the expectations in Equation (8) could be obtained for all
augmentation distributions in the natural exponential family [33]. To this end, we modify Equa-
tion (5) based on the MCF strategy and the expression can be formulated as follows:

min
F ,P,S

tr(FLSF
�) + μE

[
‖F − PX̃ ‖2F

]
+ λ‖X̃ − P�F ‖2F ,

s.t. Fl = Yl , S ≥ 0, S1 = 1,
(9)

where X̃ is the corrupted features of X . We preserve the quadratic objective loss and deploy the
isotropic Gaussian distribution to augment the feature with mean xi and variance δ 2

I. In this way,
the expectation can be written as a simple case as follows:

E
[
‖F − PX̃ ‖2F

]
= P (E[X̃ ]E[X̃ ]� +V [X̃ ])P� − 2tr(YE[X̃ ])�P� + tr(FF�),

= Ptr(XX�)P� − 2(YX )�P� + δ 2nPP� + tr(FF�),
(10)

whereV [X̃ ] is a diagonal matrix storing the variance ofX . It is the standard l2-regularized quadratic
objective function. Combined with other terms, Equation (7) can be shown as follows:

min
F ,P,S

tr(FLSF
�) + μtr(PXX�P�) − 2μtr(FX�P�) + μtr(δ 2nPP� + FF�) + λ‖X − P�F ‖2F ,

s.t. Fl = Yl , S ≥ 0, S1 = 1.
(11)

Equation (11) is the complete objective function of our model. Deploying MCF does not increase
the computational cost significantly since the complexity of the training algorithms remains linear
in n. Our model is easy to degrade to non-augmented version. From Equation (11), we observe that
Equation (11) becomes exactly the same as Equation (5) when δ = 0. We will further prove the
effectiveness of marginalization augmentation by tuning the value of δ .

Compared with our previous work, AG2E [48], our approach has an extra advantage. When
new/unseen samples come, our model could directly infer their labels by Fnew = PXnew , where
Xnew are the new samples and Fnew are the predicted labels. Such a strategy avoids the opti-
mization procedure. Although the feature distribution knowledge of new data could not be fully
explored, it is an effective and efficient way and the performance is still high and stable since P is
well trained. More theoretical analysis is provided in Section 3.5, and the empirical evaluation is
shown in Section 4.9.

Our approach is able to handle domain shift issue between labeled and unlabeled samples, which
is similar to domain adaptation approaches. While, there are several differences between them.
Conventional domain adaptation approaches explicitly learn the domain-invariant representation,
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while our approach achieves domain adaptation by exploring the sample similarities across differ-
ent domains and adjusting the similarity matrix. Moreover, conventional methods mainly diminish
the domain shift only in feature space, while our approach adaptively explores the similarities in
both feature space and label space.

ALGORITHM 1: Solution to Equation (11)

Input:

labeled and unlabeled feature matrices Xl and Xu ,
label matrix of Yl , Gaussian distribution variance δ ,
trade off parameter μ, λ and convergent threshold ϵ .

Output:

The recovered label Fu , semantic projection P .
Initialization:

Train min
P
‖Yl − P�Xl ‖2F + μ‖P ‖

2
F and initial Fu = P�Xu ,

Obtain F by concatenating Yl and F = [Yl , Fu ].
Optimization:

1: while not converged do

2: Update P(k+1) from the solution of (11);
3: while not converged do

4: Update Si (k+1) using Equation (11);
5: end while

6: Calculate Ls = Ds − (S + S�)/2, Dsii =
∑

i (Si j + S ji )/2;
7: Update Fu using Equation~(11), given others fixed;
8: k = k + 1;
9: Obtain Lk , which is the objective value of Equation~(11)
10: Check if |Lk−1 − Lk | < ϵ .
11: end while

3.4 Optimization

Three variables in Equation (11) are required to be optimized. It is difficult to obtain an explicit
solution. We adopt the Alternative Directions Method of Multipliers (ADMM) [3] to solve the
problem. ADMM is driven by alternatively optimizing the equation with respect to P , S , and F . The
pseudocode of the optimization procedure is provided in Algorithm 1. P0 is the initialization of P ,
it is initialized based on the objective function min

P0

‖Yl − P0Xl ‖2F + μ0‖P0‖2F , where μ0 is a trade-off

parameter and empirically set to 100. Then Fu is initialized by Fu = PXu . After that, ADMM is
deployed to update one variable each time where other variables are fixed. All the variables are
iteratively optimized until Equation (11) is convergent. We introduce the details of the optimization
procedure below:
Update P: When others are fixed, Equation (11) can be written as below:

min
P

tr(PXX�P�) − 2tr[(FX�)P�] + tr
[
δ 2nPP� + FF�

]
+ λ

μ
‖X − P�F ‖2F . (12)

To obtain the optimized point, we assign the derivation of Equation (12) with respect of P to
zero and obtain:

2PXX� − 2
[
(FX�)

]
+ 2δ 2nP + 2λ

μ
F (F�P − X�) = 0, (13)
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then Equation (13) can be simplified to the following equation:

(δ 2nI + λ
μ
FF�)P + P (XX�) = (1 + λ

μ
)FX�. (14)

Since Equation (14) is a Sylvester equation, the Bartels–Stewart algorithm [1] can be deployed
to efficiently solve the equation.
Update S: By ignoring other variables, Equation (11) can be written as below:

min
S

Tr(FLSF
�),

s.t. S ≥ 0, S1 = 1.
(15)

S cannot be explicitly solved due to the two constraints S ≥ 0 and S1 = 1. We optimize S row
by row, based on this strategy, the equation can be written as follows:

min
S

n∑
i=1
‖ fi − fj ‖22si j =

n∑
i=1

ai s
�
i , (16)

where ai = {ai j , 1 ≤ j ≤ n} ∈ R1×n with ai j = ‖ fi − fj ‖22 , si is the i-th row of S . KKT [4] approach
can be used for solving this problem, then the updated graph S is obtained.
Update F: When others are fixed, the objective function can be written as follows:

min
F

tr(FLsF
�) − 2μtr

[
(FX�)P�

]
+ μtr(FF�) + λ‖X − P�F ‖2F ,

s.t. Fl = Yl .
(17)

Since label matrix F is the concatenation of labeled and unlabeled data (i.e., F = [Fl , Fu ]), thus,
we can decompose Equation (17) and obtain the equation shown below:

min
Fu

tr([Fl , Fu ]Ls [Fl , Fu ]�) − 2μtr([Fl , Fu ]X�)P�

+μtr([Fl , Fu ][Fl , Fu ]�) + λ‖X − P�[Fl , Fu ]‖2F ,
s.t. Fl = Yl .

(18)

Meanwhile, Ls can also be decomposed as Ls =

[
Ll l Llu

Lul Luu

]
. Then, Equation (18) can be further

decomposed as shown below:

min
Fu

tr
(
FlLl lF

�
l
+ FuLulF

�
l
+ FlLluF

�
u + FuLuuF

�
u

)
− 2μtr

[(
FlX

�
l
+ FuX

�
u

)
P�

]
+μtr

(
FlF
�
l
+ FuF

�
u

)
+ λ‖Xu − P�Fu ‖2F ,

s.t. Fl = Yl .

(19)

To obtain the optimized point, we assign the derivation of Equation (19) with respect of Fu to
zero and obtain:

(
LulF

�
l

)�
+ FlLlu + FuLuu + FuL

�
uu − 2μPXu + 2μFu + 2λP (P�Fu − Xu ) = 0.

(20)

By simplifying Equation (20), Bartels–Stewart algorithm [1] can be used to solve the equation:

(μI + λPP�)Fu + FuLuu = (μ + λ)PXu − FlLlu . (21)

We set a threshold ϵ , if the difference is less than ϵ , then we consider the optimization process
is converged. Then we stop the process and report the final performance.
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Table 2. Datasets Statistical Summary

Datasets Setting Labeled Unlabeled Labels Ave
SUN [40] General 6,387 6,513

102 6.3
Zero-shot 12,900 1,440

CUB [47] General 4,374 4,468
312 31.4

Zero-shot 8,842 2,946

AWA [26] General 12,154 12,141
85 15.0

Zero-shot 24,295 6,180
BIRD [6] General 322 323 19 1.1
EMO [46] General 391 202 6 1.9

3.5 Complexity Analysis

In the optimization stage, updating P and F requires the Bartels–Stewart approach and the
complexity becomes O(d3) and O(n3), respectively. These steps have more efficient solution by
Coppersmith–Winograd algorithm [11] and the computational cost can be reduced to O(d2.37)
and O(n2.37). To this end, the sum of the complexity is O(td2.37 + tn2.37) where t is the itera-
tion number. The obtained computational cost is the cost for the whole optimization procedure.
It could fully explore the data structure from both labeled and unlabeled samples. However, as
mentioned in Section 3.3, we can utilize the learned projection P to directly infer the new/unseen
samples (i.e., Fnew = PXnew ). This strategy avoids the optimization procedure which is more effi-
cient. By this way, we reduce the complexity to O(n). It is more suitable for large-scale real-world
applications.

4 EXPERIMENTS

To comprehensively evaluate the effectiveness of our approach, we tested our AGMA as well as
other baselines in both general and zero-shot multi-label learning scenario. Zero-shot setting is
more challenging which attempts to recover labels from the “unseen” samples. The details will be
introduced in Section 4.4.

4.1 Datasets

Five multi-label datasets including one emotion dataset, one acoustic dataset, and three image
datasets. Brief introductions are listed as follows, and the statistical summary of the datasets is
listed in Table 2.

SUN Dataset [40] is widely used in fine-grained scene understanding and high-level scene
recognition. It contains 14, 000 samples collected from 700 classes. Each sample has a 102-
dimensional label vector which contains averagely 6.3 labels. The label value is in {0, 0.33, 0.66, 1},
since there are three annotators label each image, and the dataset averages the assigned label from
all the annotators.

CUB Dataset [47] is an augmentation dataset derived from CUB-200 dataset [53]. It contains
200 categories of birds. There are 312 attribute label candidates. The elements in the label vector
are binary values, i.e., 0 and 1.

AWA Dataset [26] is a large-scale animal attribute datasets, where more than 30,000 samples
are collected from 50 animal categories. The label is a 85-dimensional vector with the continuous
element values from 0 to 100. There are around 15 labels of each sample.

BIRD Dataset [6] contains the acoustic recordings collected from 19 different kinds of birds.
Each recording is around 10 seconds in length. The recordings are paired with its attributes
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assigned by several experts along with their confidence. Each label vector contains binary value
in {0, 1}.

EMO Dataset [46] captures the music from 233 musical albums. It aims to test the music emo-
tion evaluation approaches. There are 593 songs where each song is extracted to a 30-seconds
recording and classified to 6 emotions assigned by music experts.

For the image datasets (i.e., SUN, CUB, and AWA datasets), Very Deep Convolution Net-
works [44] pre-trained by ImageNet [12] is utilized to extract deep features. It obtains the 4, 096-
dimensional feature vector for each instance. We also evaluate GoogleNet [45] features on these
datasets and observe that different features may cause different performances, while our approach
always achieves high performance. For the BIRD dataset, we use the features provided by [6]. Both
the Rhythmic and the Timbre features provided by [46] are utilized for the EMO dataset.

4.2 Experimental Setup

Traditional multi-label scenario and the zero-shot multi-label scenario [25, 39] settings are de-
ployed in our experiments. In the conventional setting, we randomly extract the samples from the
whole datasets and build a labeled set and an unlabeled set. Each set has half of the whole sample.
Our model is evaluated five times based on the randomly generated training/testing sets and re-
port the average performance. The standard deviation is also provided. Five-fold cross-validation
is deployed to tune the trade-off parameters λ and μ. The parameter sensitivity analysis will be in-
troduced in the experiments. We evaluate our methods as well as other state-of-the-art multi-label
learning methods. The brief introduction of all the baselines are shown below:

—Least Squares Regression (Regression) is a ridge regression approach. It obtains a pro-
jection based on the training samples and then recovers the target samples.

—Semi-Supervised Multi-Label Dimensionality Reduction (SSMLDR) [18] enlarges the
multiple label information from the labeled samples to the unlabeled samples. In addition,
a transformation matrix is proposed to obtain the distinctive low-dimensional representa-
tions.

—FastTag [10] proposes two linear projections that are simultaneously optimized in a joint
convex objective function. Even if the training samples contain incomplete/noisy ground
truth labels, FastTag is able to effectively and efficiently predict the complete list of labels.

—Multi-Label with a Mixed Graph (ML-PGD) [54] designs a mixed graph which fully
explores the label dependencies. It considers the co-occurrence across each pair of the can-
didate labels and the instance-level similarities as the graph edges.

—Semantic AutoEncoder (SAE) [14] proposes an effective and efficient autoencoder strat-
egy. It recovers multiple labels without other sophisticated constraints. SAE achieves high
performance in both conventional and zero-shot learning settings.

—Adaptive Graph Guided Embedding (AG2E) [48] proposes a novel approach which si-
multaneously updates the affinity graph, recovers labels, and optimizes projected subspaces.
It effectively overcomes the label noise and long-tail distribution issues.

We deploy the metrics utilized in [17]. Specifically, the recall R and the precision (Prec) P are

obtained. P =
tp

tp+fp
and R =

tp

tp+fn
, where tp denotes true-positive. fn and fp represent the false-

negative and the false-positive, respectively. We calculate harmonic mean of the precision and the
recall, F1-score (F1), to compare the results easier. F1 = 2 P×R

P+R
. A non-zero recall (N-R) which

denotes the number of non-zero labels are further reported. Moreover, the mean average preci-

sion (mAP) utilized in [54] is further deployed for a comprehensive evaluation. For all evaluations,
higher value denotes better performance.
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Table 3. Performance Comparison with Other Methods

Dataset Method Prec Recall F1 N-R mAP

SUN

Regression 0.6318±0.0070 0.1504±0.0011 0.2429±0.0016 100.0±0.0000 0.3907±0.0026

SSMLDR 0.5625±0.0021 0.1239±0.0011 0.2031±0.0045 67.8±2.0736 0.6315±0.0038

FastTag 0.6187±0.0251 0.1473±0.0027 0.2379±0.0083 101.0±0.4265 0.6935±0.0189

ML-PGD 0.3218±0.0178 0.1521±0.0009 0.2513±0.0010 100.2±0.3235 0.7013±0.0016

SAE 0.7415±0.0089 0.1976±0.0005 0.3123±0.0011 101.4±0.5477 0.6928±0.0019

AG2E 0.7460±0.0063 0.1625±0.0019 0.2669±0.0028 102.0±0.0000 0.7174±0.0013

Ours 0.7046±0.0144 0.2040±0.0015 0.3164±0.0018 102.0±0.0000 0.6821±0.0028

CUB

Regression 0.2728±0.0080 0.0317±0.0007 0.0568±0.0013 166.6±1.7889 0.2831±0.0035

SSMLDR 0.2162±0.0031 0.0399±0.0003 0.0674±0.0006 163.8±2.8636 0.2135±0.0033

FastTag 0.3231±0.0244 0.0496±0.0028 0.0860±0.0052 163.0±4.2426 0.2457±0.0255

ML-PGD 0.3029±0.0067 0.0448±0.0002 0.0781±0.0004 132.4±3.1937 0.4081±0.0049

SAE 0.2947±0.0062 0.0424±0.0007 0.0742±0.0014 175.6±5.4498 0.4020±0.0027

AG2E 0.3351± 0.0079 0.0525±0.0009 0.0908±0.0015 194.2±3.1195 0.4011±0.0027

Ours 0.3976±0.0048 0.0578±0.0007 0.1010±0.0009 200.4±1.1670 0.4115±0.0046

AWA

Regression 0.8198±0.0098 0.0819±0.0001 0.1489±0.0003 74.8±0.8366 0.9282±0.0003

SSMLDR 0.8085±0.0087 0.0948±0.0002 0.1698±0.0004 74.0±0.8366 0.8323±0.0031

FastTag 0.7848±0.0316 0.0857±0.0031 0.1545±0.0096 67.2±3.1852 0.8851±0.0183

ML-PGD 0.5283±0.0019 0.0631±0.0001 0.1127±0.0004 44.6±1.6733 0.9103±0.0001

SAE 0.9506±0.0010 0.1029±0.0005 0.1857±0.0007 75.2±0.8944 0.8630±0.0001

AG2E 0.7745±0.0096 0.1285±0.0016 0.2204±0.0027 71.8±1.0062 0.9211±0.0074

Ours 0.9013±0.0092 0.0971±0.0018 0.1766±0.0030 81.0±0.4472 0.9355±0.0073

EMO

Regression 0.3793±0.0053 0.9114±0.0118 0.5357±0.0069 6.0±0.0000 0.5431±0.0127

SSMLDR 0.3556±0.0048 0.8965±0.0094 0.5093±0.0078 6.0±0.0000 0.5590±0.0103

FastTag 0.3833±0.0198 0.9459±0.0215 0.5456±0.0272 6.0±0.0000 0.5894±0.0428

ML-PGD 0.3784±0.0079 0.9265±0.0078 0.5373±0.0090 6.0±0.0000 0.5677±0.0135

SAE 0.3923±0.0143 0.8389±0.0083 0.5346±0.0157 6.0±0.0000 0.5770±0.0153

AG2E 0.3995±0.0122 0.9714±0.0131 0.5762±0.0121 6.0±0.0000 0.5825±0.0181

Ours 0.4474±0.0080 0.8361±0.0230 0.5829±0.0118 6.0±0.0000 0.5962±0.0201

BIRD

Regression 0.0764±0.0078 0.3726±0.0367 0.1268±0.0128 12.8±0.7071 0.2364±0.0546

SSMLDR 0.0709±0.0052 0.3465±0.0282 0.1178±0.0093 12.2±0.7071 0.1436±0.0382

FastTag 0.1005±0.0144 0.3783±0.0421 0.1601±0.0153 15.6±1.1400 0.1643±0.0857

ML-PGD 0.0809±0.0089 0.3883±0.0267 0.1338±0.0134 15.4±1.0000 0.2423±0.0329

SAE 0.0964±0.0107 0.3665±0.0435 0.1526±0.0156 15.2±1.3038 0.1779±0.0480

AG2E 0.1021±0.0150 0.4529±0.0186 0.1653±0.0187 16.8±0.7786 0.2454±0.0466

Ours 0.1065±0.0131 0.5216±0.0181 0.1780±0.0143 18.0±0.0000 0.3519±0.0311

4.3 Performance Comparison

Table 3 shows the classification evaluations. The result illustrates the higher performance is ob-
tained by our approach than other methods in most of the metrics. In addition, we can see that the
deviations of all the evaluated methods are relatively low. Although the deviations of our approach
are not the smallest, it is small enough to demonstrate the significance and stability of our method.

We observe that the mAP performance is not competitive in the AWA dataset. We conjecture
several reasons. First, in the AWA dataset, the samples which belong to the same class have con-
sistent label vectors. Consider there are only 50 different label vectors corresponding to the 50
classes. The label distribution/diversity is narrow and this situation is unique in the AWA dataset.
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Fig. 2. Multi-label annotation performance based on part of the available training samples. It denotes that
our approach still achieves high performance when fewer and fewer labeled samples are provided in the
training stage. It demonstrates the effectiveness and stability of the trained model.

We assume it is hard for our approach to learn the comprehensive distribution knowledge and
augment diverse features. Second, the AWA dataset contains 24, 295 samples with averagely 15
labels in each sample. The dataset scale is bigger than other datasets. We conjecture that the data
scale is already big enough for training a good classifier, and our model gains limited benefits
from the feature augmentation strategy. Meanwhile, our model still gets the best performance
in mAP metric which is considered as one of the most important metrics (i.e., F1 and mAP) for
multi-label learning scenario. For the SUN dataset, we observed that the precision and mAP are
not the highest performance. We assume that although the feature augmentation strategy is ef-
fective for improving the performance, the precision-recall improvement balances of different
datasets are uncertain. We observe that in most of the cases either precision or recall is higher
than other state-of-the-art methods. F1 metric is a comprehensive evaluation which considers
both precision and recall, and our method obtains the highest performance in most of the target
datasets.

4.4 Zero-shot Multi-label Classification

More challenging zero-shot scenario is deployed for evaluating our approach. In zero-shot setting,
the classes in the training set and the test set have no overlap, which means the feature distribution
gaps between training and test sets are more significant. Specifically, in multi-label scenario, all
the samples share the same set of multi-label candidates, while the training and test samples are
extracted from non-overlapped categories (e.g., horse and zebra could be in training and test sets,
respectively. They share similar shape labels but different color/texture labels). SUN, CUB, and
AWA datasets have the default splits for zero-shot scenario. Specifically, in SUN dataset, it contains
645 training classes and 72 test classes. In CUB dataset, 150 bird categories are used for training
and the rest 50 categories are used for testing. Moreover, AWA dataset consists 40 training classes
and 10 test classes. The detailed sample numbers are further summarized in Table 2.

The same evaluation metrics as a general multi-label task are deployed and the results are illus-
trated in Table 4. We can observe that our approach achieves higher performance compared with
other baselines. The result illustrates the ability of our approach for handling domain shift sce-
nario. The standard deviations are still small while slightly higher than conventional multi-label
setting. We assume it is due to the larger distribution gap across training and test data in zero-shot
scenario.

4.5 Model Robustness Analysis

To estimate the robustness of our model, we use only partial samples from the labeled set (from 10%
to 100%) and the final results are shown in Figure 2. From Figure 2, we observe that our approach
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Table 4. Zero-shot Multi-label Learning Performance

Dataset Method Prec Recall F1 N-R mAP

SUN

Regression 0.4301±0.0083 0.1243±0.0018 0.1929±0.0023 62.0±0.0000 0.4142±0.0035

SSMLDR 0.2611±0.0029 0.1055±0.0018 0.1503±0.0061 48.2±2.2893 0.3516±0.0046

FastTag 0.3924±0.0316 0.1317±0.0042 0.1972±0.0152 60.6±3.1825 0.3775±0.0227

ML-PGD 0.2972±0.0198 0.1138±0.0013 0.1646±0.0020 34.6±2.5273 0.5181±0.0025

SAE 0.4838±0.0128 0.1210±0.0007 0.1943±0.0015 55.8±0.6285 0.5357±0.0021

AG2E 0.4925±0.0059 0.1235±0.0028 0.1975±0.0041 55.2±0.1685 0.5132±0.0017

Ours 0.4710±0.0162 0.1326±0.0017 0.2069±0.0020 57.8±2.2114 0.4739±0.0031

CUB

Regression 0.2026±0.0091 0.0268±0.0009 0.0474±0.0018 143.6±1.9128 0.1982±0.0044

SSMLDR 0.1949±0.0042 0.0360±0.0004 0.0607±0.0008 131.4±3.1010 0.2535±0.0038

FastTag 0.2821±0.0286 0.0428±0.0033 0.0743±0.0074 143.0±3.6278 0.2229±0.0266

ML-PGD 0.1953±0.0081 0.0357±0.0002 0.0604±0.0006 81.8±2.4681 0.3095±0.0061

SAE 0.2206±0.0083 0.0355±0.0009 0.0611±0.0019 138.4±5.1826 0.3064±0.0035

AG2E 0.2749±0.0086 0.0415±0.0011 0.0720±0.0017 172.0±2.1983 0.3115±0.0036

Ours 0.2838±0.0062 0.0446±0.0009 0.0768±0.0011 172.2±1.8315 0.3004±0.0050

AWA

Regression 0.7761±0.0151 0.0761±0.0004 0.1386±0.0007 68.4±1.0425 0.8818±0.0012

SSMLDR 0.7380±0.0121 0.0787±0.0003 0.1423±0.0004 67.6±1.2185 0.8423±0.0082

FastTag 0.7753±0.0451 0.0852±0.0052 0.1535±0.0165 65.8±3.8195 0.8838±0.0267

ML-PGD 0.4570±0.0026 0.0607±0.0002 0.1073±0.0005 39.8±2.1066 0.8431±0.0004

SAE 0.8914±0.0016 0.0920±0.0007 0.1648±0.0011 71.6±1.1528 0.8432±0.0004

AG2E 0.8810±0.0132 0.0897±0.0018 0.1511±0.0035 71.8±1.1225 0.8381±0.0093

Ours 0.9129±0.0129 0.0906±0.0028 0.1657±0.0052 84.0±0.6385 0.8493±0.0085

Table 5. Ablation Study of Marginalized Augmentation Strategy

Dataset Aug. Prec Recall F1 N-R mAP

EMO
× 0.4215±0.0071 0.8357±0.0294 0.5611±0.0152 5.0±0.0000 0.5832±0.0187
√

0.4474±0.0080 0.8361±0.0230 0.5829±0.0118 6.0±0.0000 0.5962±0.0201

BIRD
× 0.1051±0.0189 0.5113±0.0201 0.1735±0.0113 17.0±0.0000 0.3391±0.0253
√

0.1065±0.0131 0.5216±0.0181 0.1780±0.0143 18.0±0.0000 0.3519±0.0311

SUN
× 0.6953±0.0096 0.1914±0.0024 0.3011±0.0031 100.0±0.0000 0.6785±0.0030
√

0.7046±0.0144 0.2040±0.0015 0.3164±0.0018 102.0±0.0000 0.6821±0.0028

is still able to secure the high performance even only 20% labeled samples are provided, and it
achieves the highest performances in most of the metrics when the ratio is from 20% to 100%. The
results prove the robustness of our model with limited samples.

4.6 Marginalized Feature Augmentation

To demonstrate the effectiveness of the marginalized augmentation strategy, we evaluated the
performance with and without augmentation module. As we discussed in Section 3.3, our model
can degrade to a non-augmentation version when the variation of the augmented feature distri-
bution, δ , is reduced to zero. To this end, we tested the performance with and without it by tuning
δ = 0, and the result is shown in Table 5. Moreover, we gradually increase δ value and report the
performance. The results in the BIRD dataset are illustrated in Figure 3. From the results, we ob-
serve that as δ increases, almost all the metrics have some improvements. This result demonstrates
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Fig. 3. Learning performance based on different values of the Gaussian distribution variance δ for feature
augmentation. Different colors indicate the five metrics respectively. The result shows that almost all the
metrics improve as δ increases. It demonstrates the effectiveness of MCF module.

Fig. 4. Parameter sensitivity analysis of μ and λ. The much “redder” of the color indicates the higher of the
performance, and vice versa. From the results we observe that there are a wide range of values which could
make our model achieve the best performance. It proves the effectiveness and robustness of our model. In
real-world applications, cross-validation can be utilized for parameter tuning.

the effectiveness of the marginalized augmentation for improving the performance. In the exper-
iments, we notice that the same type of feature achieves the highest performance based on the
same δ , and different features require different δ . We utilize cross-validation to tune δ and report
the performances. In addition, we observe that the performances of different values of δ are rel-
atively independent to other variables (i.e., μ and λ). Therefore, we tune δ after other parameters
are tuned. It is a more practical strategy in real-world applications.

4.7 Model Analysis

We further visualize the performance based on different values of μ and λ to analyze the parameter
sensitivity. The result is shown in Figure 4. The color scale bar from blue to red indicates the
performance from low to high. From Figure 4, we can obtain two conclusions. First, both μ and λ
could affect the performance. Second, there is a large region (i.e., red region) in the visualization
result where μ and λ are roughly equal to each other. This configuration usually leads to the best
performance. In our parameter tuning process, we usually set one parameter fixed (e.g., μ = 1)
and utilize cross-validation strategy to tune the value of λ. Based on our observation, this strategy
could achieve the best performance for all the datasets.

There is another hyper-parameter K in the our model, which denotes the number of the nearest
sample points in the feature space. We observe that most low-similarity pairwise samples have
the similarity value close to zero and they have almost no influence to the final obtained S . In our
implementation, we update S based on the nearest K pairwise samples. To prove this, we evalu-
ate the performance with different K = [0, 200] in Figure 5. It shows that the performance drops
considerably when only a few (i.e., 0, 1, or 2) of the nearest neighbors are utilized for updating
the adaptive graph. Meanwhile, K > 200 seems to have no distinctive negative influence to most
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Fig. 5. Parameter sensitivity analysis of the graph nearest neighbor K in S optimization procedure. It shows
that instead of optimizing S for all sample pairs, calculating several nearest sample pairs could achieve the
similar performance. It indicates the robustness of adaptive graph and we can further reduce the computa-
tional complexity in training procedure by reducing the value of K .

Fig. 6. (a) Objective function (i.e., Equation (11)) values as iteration increases. It illustrates the convergence
of the optimization procedure. (b) Time consumption of all methods in the testing stage. It illustrates that
our approach is one of the most efficient methods which is suitable for large-scale applications.

of the datasets. We observed that most of the elements in S are very close to 0, which means
S is usually sparse after the optimization procedure. Thus, K does not have any negative influ-
ence on the final performance if K is great enough. From the result, we conclude that K ≥ 30 is
an appropriate value for most cases, and we do not need further parameter tuning for K , which
reduces the unnecessary calculation on updating S without loss the performance for the final
prediction.

4.8 Convergence Analysis

In the training stage, we utilize the ADMM [3] algorithm for solving the objective function. Specif-
ically, the three target variables are alternatively optimized to its optimal point until the final ob-
jective loss is converged (i.e., Equation (11)). Considering multiple are optimized independently in
the training stage, thus, it is difficult to theoretically guarantee the obtained solution is the global
optimal point. In practice, we empirically analyzed the global convergence of our approach. The
objective function value of Equation (11) is shown in Figure 6(a) as the ADMM iteration increases,
and different colors denote all five datasets. From Figure 6(a), we observe that the objective func-
tion values significantly decrease in the first 10 iterations and become stable afterward. The result
empirically indicates that our optimization strategy is effective and could converge in most real-
world datasets.

4.9 Time Consumption

The time consumption of each method is illustrated in Figure 6(b). We can see from the results that
our model associated with SAE [14] and regression approaches are the most efficient approaches.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 1, Article 12. Publication date: June 2021.



Generic Multi-label Annotation via Adaptive Graph and Marginalized Augmentation 12:17

Fig. 7. Case study of the label prediction results from the SUN dataset. Black font means correct prediction
and red font means incorrect prediction. In addition, blue font indicates the “correct” prediction based on
our judgments while missing in ground truth.

Fig. 8. Zero-shot image retrieval result from SUN dataset. Given a target retrieval label, the samples in the
testing set which have the highest prediction score are selected. Green and red boxes are the correct and
incorrect retrievals. The numbers in right bottom corner indicate the rankings of the samples.

The main explanation is that although in the training stage, our approach requires to alternatively
optimize all the variables including P , S , and F . While, after the training procedure is finished,
our approach could directly utilize the learned projection P to project new/unseen samples be-
tween visual and semantic/label spaces (Equation (2)). By this way, the inferring process could be
degraded to a matrix multiplication operation without any extra computational costing calcula-
tions (e.g., eigen-decomposition). The complexity is O(n) where n is the input sample numbers.
Our previous work, AG2E [48], requires to update the entire adaptive graph based on labeled and
unlabeled samples, which is both space and computational costly.

4.10 Image Annotation

Image annotation setting is evaluated in the SUN dataset. Figure 7 listed the sample images as
well as the corresponding predicted labels. Different colors indicate different prediction results.
Considering some samples have a large number of labels, we only list the top 15 labels for discus-
sion. In Figure 7, the red font is the incorrect prediction and the black font is the correct prediction.
Blue font indicates the “correct” prediction based on our judgments while missing in ground truth.
Figure 7 illustrates that most of the prediction results are correct and our model is able to reveal
several “missing” labels. It demonstrates the efficiency and effectiveness of our method.
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4.11 Image Retrieval

Image retrieval setting is also evaluated. It retrieves specific images from a set of images [30]. In
our implementation, the obtained P assigns labels to the candidate images. The candidate images
are ranked based on the prediction confidence. Zero-shot setting is utilized which means the target
image categories are unseen in the training stage. The retrieved samples are listed in Figure 8. Each
row shows the retrieval label and the obtained images. The images with green and red boxes are
the corrected and incorrect retrieval. We observe that our model effectively retrieves the target
images even based on the target label even if the image categories are unseen in the training stage.

5 CONCLUSION

We designed a novel generic multi-label learning framework via AGMA in a semi-supervised learn-
ing scenario. It efficiently utilizes limited labeled samples associated with unlabeled samples to im-
prove learning performance. In AGMA model, an adaptive similarity graph is learned to effectively
obtain the intrinsic structure within the data; moreover, a marginalized strategy is explored to fur-
ther augment the samples to reinforce the generalization and robustness of the learned model.
An autoencoder is utilized to connect visual space and label space. Extensive experiments prove
the usefulness of all designed modules in our framework, and demonstrate the high robustness,
accuracy, and efficiency of our AMGA method.
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