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In real-world applications, a single instance could have more than one labels. To solve this task, multi-label
learning methods emerged in recent years. It is a more challenging problem for many reasons, such as complex
label correlation, long-tail label distribution, and data shortage. In general, overcoming these challenges and
bettering learning performance could be achieved by utilizing more training samples and including label
correlations. However, these solutions are expensive and inflexible. Large-scale, well-labeled datasets are
difficult to obtain, and building label correlation maps requires task-specific semantic information as prior
knowledge. To address these limitations, we propose a general and compact Multi-Label Correlation Learning
(MUCO) framework. MUCO explicitly and effectively learns the latent label correlations by updating a label
correlation tensor, which provides high accurate and interpretable prediction results. In addition, a multi-label
generative strategy is deployed to handle the long-tail label distribution challenge. It borrows the visual
clues from limited samples and synthesizes more diverse samples. All networks in our model are optimized
simultaneously. Extensive experiments illustrate the effectiveness and efficiency of MUCO. Ablation studies
further prove the effectiveness of all the modules.
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1 INTRODUCTION
Traditionally, single label scenario assumes one label per image instance. However, with the
exponential growth of digital applications, real-world computer vision and machine learning tasks
have found an increasing need to get multiple labels from an individual sample. For instance, a
single image could contain multiple labels describing its category, size, color, shape, texture, and so
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Fig. 1. Label correlation is the unique and crucial knowledge for predictingmulti-labels effectively. For example,
the label Dry and Moist cannot exist simultaneously, and they are exclusive to each other. Meanwhile, the
label Water usually has a positive connection with Moist. They are complementary to each other. Different
labels could have various connections with other labels. We illustrate the complementary (green lines) and
exclusive (red lines) correlations. Based on the correlation knowledge, the model could enhance the confidence
of the multi-label predictions and eliminate incorrect predictions.

on, potentially reaching hundreds of labels. Due to this reason, multi-label learning methods are
proposed to address the difficulties [2].

Limited training samples, long-tailed label distribution, and the latent connections between labels
are the major challenges. The first challenge occurs commonly in most of the corresponding datasets.
For instance, there are 18, 689 samples in the ESP dataset [40] and 268 candidate labels. However,
there is only a small number of labels, 4.69, assigned to each image on average. Traditional multi-
label learning approaches mainly deploy specifically designed constraints to reduce the negative
influence of the overfitting issue. However, this strategy cannot be generalized. Others use auxiliary
samples without labels to expand the label information in a semi-supervised setting [1]. However,
this strategy can easily cause negative transfer when the auxiliary data differs significantly from
the original dataset.
In addition, the challenge also comes from the long-tailed or uneven distribution of the labels.

Specifically, certain labels (e.g., “Man-made” ) occur commonly while others (e.g., “Fire” ) rarely
show up. This causes the training samples with “tail” labels to fail to cover the entire test space, and
introduces potential biases for different labels that significantly decreases the number of positive
predictions for “tail” labels. [52] investigates the negative impacts induced by imbalanced data on
overall performance. [51] proposes a novel Distribution-Balanced strategy which re-balances the
label co-occurrence weights. However, building large-scale, well-labeled, and task-specific datasets
is much more expensive and difficult than building single-label datasets. Moreover, multi-label
learning also has the unique characteristic of label correlation. As illustrated in Figure 1, the label
Dry and Moist cannot exist simultaneously, and they are exclusive to each other. Meanwhile, the
labelWater usually has a positive connection with Moist. They are complementary to each other.
Different labels could have various connections with other labels. Label correlation is the unique
and crucial knowledge for predicting multi-labels effectively [48, 49]. However, obtaining the label
correlations as the prior knowledge is difficult, since it requires expert knowledge, and it is not
feasible to extend the correlations to other tasks, which limits the practicability of this strategy.
We proposed a Multi-label Correlation Learning (MUCO) method. Specifically, a multi-label

generation strategy is designed to overcome the limited and long-tail distributed labels. The
framework is shown in Figure 2. The generative model explores the visual distribution of the real
images. Then, it borrows visual clues to generate more samples conditioned on the given labels.
Meanwhile, a novel label correlation tensor is designed to effectively and explicitly extract the
label correlations between the labels. The learned tensor is used to further fine-tune the prediction
results. We listed our main contributions below:
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Fig. 2. Framework of our MUCO method. A multi-label generative strategy is deployed to explore the visual
clues and diversify the training samples. It effectively mitigates the negative influence of the long-tail label
distribution and limited training data challenges. A multi-label classifier is used to obtain initial prediction. A
trainable label correlation tensor is proposed to learn the label correlations and further fine-tune the initial
results. By this way, both the generated visual features as well as the label correlations could be fully explored.
In the MUCO framework, all modules are simultaneously optimized, and the end-to-end training strategy
makes our model practical for real-world applications.

• A multi-label generative network is specifically proposed to conditionally synthesize more
diverse samples. It effectively addresses the long-tail label distribution difficulty as well as
the training sample shortage issue.

• A specifically designed correlation learning module is proposed based on a correlation tensor
which explicitly learns and utilizes the correlations.

• A multi-label prediction constraint and the feature label constraint is proposed to tune the
diversity of the generation results. These constraints effectively stabilize the generative model
and achieve more generalized performance.

• Experiments demonstrate the effectiveness of the model, and various ablation studies quanti-
tatively and visually illustrate the contribution of each modules.

Our MUCO framework is a data driven approach which automatically explores the latent label
correlations without any other semantic knowledge. Moreover, the MUCO deploys an end-to-end
training strategy to optimized the all the weights jointly. To this end, it is easy and practical to
deploy MUCO in any practical multi-label tasks. MUCO is an extension of the conference version of
our work [44] with two major improvements. First, a novel label correlation exploration structure
is proposed. It enhances the flexibility and capability to explore the correlations. Second, a tensor-
based module is designed to learn the label correlations. Compared with other deep models, it
provides interpretable correlation knowledge which could be helpful for further understanding
and tuning the final prediction results. The experiments denote that MUCO gets higher evaluation
results than other benchmark multi-label methods.

2 RELATEDWORK
2.1 Multi-label Learning
The ultimate task of Multi-label learning is to explore the patterns between sets of labels for certain
instances and is common in a lot of practical tasks, such as language models [9, 20, 25], image
annotation [2, 15], and scene understanding [34]. Multi-label learning presents more challenges
than conventional single-label classification tasks [2]. Multi-label learning has two types: supervised
and semi-supervised [1, 2, 55]. Supervised learning include [5], which presents a way to reduce
the negative influence of the noisy label, MEFF [8], which uses a fusion between multiple views
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to approach multi-label classification, and [53], which proposes a general modulation module
that utilizes the related tasks to enhance the retrieval performance. These approaches all require
relatively large-scale and well-labeled samples to work effectively. However, the scale of multi-label
datasets [7, 32, 40, 41] are limited. Transfer learning [31, 35] is able to train models with fewer
labeled instances while using large amounts of unlabeled, auxiliary data as supplement [1, 42, 55].
Nevertheless, effectiveness of these strategies depend on the compatibility of the source and target
samples, which is hard to control. For example, if the data between the target and source domains
is not similar, there will not be any useful information extracted from the auxiliary data. It can even
hurt the performance due to the negative transfer. Long-tailed label distribution is another unique
challenge of multi-label learning, which means certain labels occur commonly while others rarely
show up. This causes the training samples with “tail” labels to fail to cover the entire test space, and
introduces potential biases for different labels that significantly decreases the number of positive
predictions for “tail” labels. [52] explores the negative influence of the data imbalanced issue, and
proposed a RoBal framework which contains a scale-invariant classifier. [51] proposed a novel
Distribution-Balanced strategy. It considers the label co-occurrence via a weights re-balancing
strategy. [47] analyzes the potential impact of missing labels, noisy labels, and tail labels. A novel
efficient low-complexity model is proposed. [3] proposed a X-Transformer framework, which
fine-tunes transformer-based strategy. A LightXML framework is proposed in [14] which utilizes a
sampling solution to handle the label imbalance issue. A ECLARE method is proposed in [28] which
explores jointly considers the label correlations as well as the label text for predictions. A DECAF
framework is proposed in [27] which fully explores the metadata of the label to get distinguished
representations. Label correlation is also a crucial knowledge to improve performance. How to
effectively explore the structural knowledge and utilize it to enhance the learning performance is
always challenging task in machine learning fields [21, 22, 45]. [19, 23, 43, 49, 50] deploy graph-
based methods by exploring the structural knowledge to introduce the label correlation. [48] uses a
pre-existing label syntactic structure to discover correlation between different labels and deduce
label noise. Label embedding [38] explores label relationships by projecting them into the semantic
space. [6] uses attention and sequential (i.e., RNN and LSTM) modules to obtain the predictions. In
these methods, the well-defined syntactical knowledge is crucial and necessary to obtain reasonable
prediction results, and the knowledge is usually task-specific which is hard to be extended to other
tasks. This issue makes the methods impractical.
Here, we propose a correlation learning approach in multi-label scenario. A generative model

explores the visual distribution from the training samples and reuses these features across samples
to generate more images for training. Our framework is more effective in obtaining the explainable
label correlations and further improves learning performance.

2.2 Generative Adversarial Net (GAN)
Generative Adversarial Network [10] is the most popular and representative generation method.
It is made up of two modules: a discriminator and a generator. The two modules are optimized
in opposition; the generator aims to produce realistic samples to confuse the discriminator. On
the other hand, the discriminator aims to differentiate between the generated and real samples.
Both networks compete and improve until there are no distinguished differences between the
samples for the discriminator. Different types of GANs are utilized for different applications. Least
Squares GAN [24] bypasses the vanishing gradient challenge by using least squares in the training
process. Mode Regularized GAN [4] greatly stabilizes the training of GAN models by proposing
ways of regularizing the objective function. Cycle GAN [54] overcomes the absence of paired
samples by proposing a structure that projects a visual sample across the target and source domains.
Conditional GAN (CGAN) [26] expands on the traditional GANmodel by adding further information
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as the condition, such as target categories. ACGAN [30], based on CGAN, promotes a classifier for
generation which guides and stabilizes the generator’s training process. However, ACGAN and
CGAN were not designed for objective classification, as they use the perceptual test of human
beings (e.g., MS-SSIM [46]) to demonstrate the diversity of the generated samples. Conditional
Loss-Sensitive GAN (LS-GAN) [33] is used to assign single labels to target images and make the
generated image more real with a loss function. Nevertheless, LSGAN is still hard and impractical
for multi-label setting due to its optimization strategy.

Unlike previous works, our approach explores the generative model for multi-label classification.
Our approach explores the latent connections across different visual components and increases the
overall sample diversity for classification tasks rather than subjective human evaluation [46]. It is
able to overcome challenges with limited multi-label training data and span the entire feature area.

3 OUR APPROACH
3.1 Motivation & Preliminaries
Formally, the features of the multi-label training data are given by {𝑋𝑡𝑟 , 𝑌𝑡𝑟 }. 𝑋𝑡𝑟 ∈ R𝑑×𝑛𝑡𝑟 is the
feature matrix, where 𝑛𝑙 is the number of training samples, 𝑑 is the dimension of the feature vector,
and each column 𝑥𝑖 ∈ R𝑑 represents one instance. Similarly, 𝑌𝑡𝑟 ∈ R𝑑𝑙×𝑛𝑡𝑟 is the corresponding
label matrix. 𝑑𝑙 is the label dimension, and 𝑦𝑖 represents the label vector corresponding to 𝑥𝑖 . Our
approach aims to recover the multi-label𝑌𝑡𝑒 from the given testing samples𝑋𝑡𝑒 , by training samples
{𝑋𝑡𝑟 , 𝑌𝑡𝑟 }without any other prior knowledge. As we introduced in Section 1, the sample distribution
in the visual space is considerably larger than the distribution in the label space. To this end, it is
difficult to train a multi-label classifier directly without adding constraints. In addition, the label
correlations between various samples could provide unique and informative clues. Exploring and
utilizing these correlations is crucial for further improving the learning performance.

3.2 Our MUCO Framework
There are three major modules in our approach. A conditional generative module which includes
a discriminator 𝐷 (·), a generator 𝐺 (·), and a multi-label classifier 𝐶𝑀 (·). 𝐶𝑀 (·) obtains initial
prediction results from the given samples, and a multi-label correlation learning network𝐶𝑀𝑈𝐶𝑂 (·)
which explores the label correlation and finally determines the most accurate multi-label prediction
results. In the generation stage, 𝐺 (·) outputs the generated samples based on the input multi-label
vector as its condition. The equation is shown below:

𝑋𝑔 = 𝐺 (𝑧 |𝑌 ), (1)

where 𝑧 represents a vector of random noise and 𝑌 is a label vector extracted from real training
instances. The discriminator, 𝐷 (·), is then optimized to differentiate across the generated and real
instances. The loss function is shown below:

𝐿𝐷 = 𝐸𝑧∼𝑝𝑧 (𝑧) log(1 − 𝐷 (𝐺 (𝑧 |𝑌 ))) + 𝐸𝑋∼𝑝𝑋 (𝑋 ) log𝐷 (𝑋 |𝑌 ). (2)

In this stage, the generator learns the visual distribution and components from the given samples.
These components are used to generate more diverse samples.

Compared with the conditional generation task in the single-label scenario, multi-label samples
contain more trivial details that contribute considerably to the final predictions. To this end, we
deploy three constraints which seek more stable and fine-grained generation results. The first
objective is the general adversarial training objective function with 𝐷 (·). It lets𝐺 (·) generate visual
samples to be as real as possible. The objective is shown below:

𝐿𝐺𝑑 = −𝐸𝑧∼𝑝𝑧 (𝑧) log(1 − 𝐷 (𝐺 (𝑧 |𝑌 ))) . (3)
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In addition, considering the sophisticated label combinations and the relatively small scale of
the multi-label dataset, a classification similarity constraint is proposed. Inspired by the work of
ACGAN [30], we pull the multi-label predictions of the generated samples to be as similar as the
ground-truth samples. The loss function is illustrated below:

𝐿𝐺𝑐 = ∥𝐶𝑀 (𝐺 (𝑧 |𝑌 )) − 𝑌 ∥2F, (4)

where 𝐶𝑀 (·) is a initial multi-label classifier. In addition, due to the significant diversity of the
input features, the generative model may not be stable enough for handling different scales of the
training samples, especially the small-scale datasets. To this end, we further include a similarity
constraint. It is a simple and straightforward objective which controls the similarities of the real
and generated samples directly in the feature space, and the loss function is shown below:

𝐿𝐺𝑠 = ∥𝐺 (𝑧 |𝑌 ) − 𝑋 ∥2F . (5)

The overall objective function of 𝐺 (·) is combination of the above objectives:

𝐿𝐺 = 𝐿𝐺𝑑 + 𝛼𝐿𝐺𝑐 + 𝜆𝐿𝐺𝑠 . (6)

where 𝜆 and 𝛼 are set as the trade-off parameters.
The proposed generative model mainly addresses the feature diversity and shortage issues.

Meanwhile, effectively exploring and utilizing the sophisticated label correlation knowledge is
still a challenge. We introduce a correlation learning structure which specifically focuses on this
challenge. First, a general multi-label classifier,𝐶𝑀 (·), is utilized to get the initial multi-label results.
Specifically, in the training procedure, both the real and generated samples are used. The objective
function is shown below:

𝐿𝐶𝑀
= 𝜇∥𝑌 −𝐶𝑀 (𝐺 (𝑧 |𝑌 ))∥2F + ∥𝑌 −𝐶𝑀 (𝑋 )∥2F, (7)

where the two terms are the classification losses of the real and generated samples. 𝑌 is the
real multi-label vector which is used to conditionally generate samples. 𝜇 is used to balance the
contribution of generated and real data in the training process of 𝐶𝑀 (·). 𝐶𝑀 (·) is a simple and
straightforward multi-layer neural network.

However, the structure of𝐶𝑀 (·) is too simple to extract the sophisticated label correlations, while
we consider it still provides the initial prediction results. The continuous scores/confidences which
contain extra information for further exploration. To this end, a specifically designed Multi-label
Correlation Learning (MUCO) network is proposed. The network structure is illustrated in Figure 2.
We assume the initially predicted label vector, 𝑓𝑖 , is obtained by 𝐶𝑀 (·):

𝑓𝑖 = 𝐶𝑀 (𝑥𝑖 ), (8)

where 𝑓𝑖 ∈ R𝑑𝑙×1 is the prediction of a given instance 𝑥𝑖 . Then, a horizontally padding is conducted
on 𝑓𝑖 to get a matrix 𝐹𝐻𝑖 , where there are 𝑑𝑙 of 𝑓𝑖 be concatenated together:

𝐹𝐻𝑖 = [𝑓𝑖 , 𝑓𝑖 , 𝑓𝑖 , · · · , 𝑓𝑖︸           ︷︷           ︸
𝑑𝑙

],
(9)

where 𝐹𝐻𝑖 ∈ R𝑑𝑙×𝑑𝑙 . In addition, a similar vertical padding is further used on 𝑓𝑖 to get matrix 𝐹𝐻𝑖 :

𝐹𝑉
𝑖
= [𝑓𝑖 , 𝑓𝑖 , 𝑓𝑖 , · · · , 𝑓𝑖︸           ︷︷           ︸

𝑑𝑙

]⊤ = 𝐹𝐻𝑖
⊤
.

(10)

where 𝐹𝑉
𝑖
∈ R𝑑𝑙×𝑑𝑙 . Given a position (𝑖, 𝑗), 𝐹𝐻𝑖 (𝑖, 𝑗) and 𝐹𝑉

𝑖
(𝑖, 𝑗) correspond to 𝑖-th and 𝑗-th labels

testing scores.
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To this end, a correlation tensor, 𝑇𝐿 ∈ R𝑑𝑙×𝑑𝑙×2, is further proposed to actively learn the weights
between the label pairs. We can consider 𝑇𝐿 is concatenated by two matrices 𝑇𝐿 = [𝑇𝐻

𝐿
,𝑇𝑉

𝐿
], where

𝑇𝐻
𝐿
,𝑇𝑉

𝐿
∈ R𝑑𝑙×𝑑𝑙 . Then, the correlation tensor and the label matrices are multiplied in element-wise:

𝐹𝐶𝑖 = 𝛿 (𝐹𝐻𝑖 ◦𝑇𝐻
𝐿

+ 𝐹𝑉
𝑖
◦𝑇𝑉

𝐿
), (11)

where ◦ is the multiplication operation in element-wise. 𝛿 (·) is the ReLU or other activation
functions, and 𝐹𝐶𝑖 ∈ R𝑑𝑙×𝑑𝑙 is the obtained matrix. By this way, each pair of initial predicted label
scores are combined by the trainable tensor𝑇𝐿 , and the elements of𝑇𝐿 corresponding to the weights
of the pairwise labels. By this way, 𝑇𝐿 effectively and explicitly gets the correlation knowledge and
the obtained 𝐹𝐶𝑖 is a more comprehensive and correlation preserved representation. After that, we
reshape 𝐹𝐶𝑖 to a vector. Then, another fully-connected network, 𝐶𝑀𝑈𝐶𝑂 (·), is used to get the final
results. The loss function is illustrated below:

𝐿𝐶𝑀𝑈𝐶𝑂
=

𝑛𝑙∑
𝑖=1

∥𝑦𝑖 −𝐶𝑀𝑈𝐶𝑂 (𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝐹𝐶𝑖 ))∥22, (12)

where 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (·) is the reshape operation which reshapes a matrix to a vector. 𝑦𝑖 ∈ R𝑑𝑙×1 is the
ground-truth vector. By this structure, the pairwise correlations could be effectively explored and
used to obtain the more accurate final predictions.

In our model, both𝐶𝑀 (·) and𝐶𝑀𝑈𝐶𝑂 (·) contribute to the final prediction results. To this end, we
make 𝐶𝑀 (·) and 𝐶𝑀𝑈𝐶𝑂 (·) be optimized simultaneously by adding their loss functions. The final
objective is shown below:

𝐿𝐶 = 𝛾𝐿𝐶𝑀
+ (1 − 𝛾)𝐿𝐶𝑀𝑈𝐶𝑂

, (13)
where 𝛾 ∈ [0, 1] is the trade-off weight which balances the training of 𝐶𝑀 (·) and 𝐶𝑀𝑈𝐶𝑂 (·). The
joint training strategy allows both networks to be flexible and compatible with each other and
achieve the highest performance. In summary, 𝐶𝑀 (.) provides the rough prediction results by
exploring the feature-label relations, and 𝐶𝑀𝑈𝐶𝑂 (.) further explores the label-label correlations to
refine the initial results.

In our implementation, the discriminator𝐷 (·) is a fully-connected network with three layers. The
ReLU [29] is deployed as the activation function in the first layer, and a mini-batch [36] operation
is set as the second layer, the final layer is with the Sigmoid activation function. Moreover, 𝐶𝑀 (·)
and 𝐶𝑀𝑈𝐶𝑂 (·) are 2-layer fully-connected networks. In its first layer, ReLU activation is deployed
for non-linear projection, and the Sigmoid activation before output is used in the final layer for
prediction output. For hyper-parameters, we empirically set 𝜇 = 1, which expects the numbers
of the real and generated samples to be evenly used in the training procedure. In addition, we
set 𝛾 = 0.5, which indicates that the 𝐶𝑀 (·) and 𝐶𝑀𝑈𝐶𝑂 (·) have the same weights. The detailed
parameter sensitivity analysis and discussion are provided in Section 4.

3.3 Discussion
Our MUCO approach differs from the conventional generative model in multiple ways. First, MUCO
utilizes multi-label knowledge as the conditions to synthesize additional samples. While, other
models are traditionally used in the easier single-label scenario. Second, our approach can be
better applied in various real life applications, as the label correlations are learned in the training
stage without the need for additional knowledge (e.g., word/semantic embedding, hierarchical
correlation). Third, the model is efficient in the testing stage compared with other graph-based or
subspace learning approaches. In addition, the we trained our model in the end-to-end protocol,
which makes the model compatible with diverse tasks. The end-to-end strategy requires more
stabilization designs including the similarity constraint and the classification similarity loss. In
addition, a more refined learning rate tuning process of the generator and discriminator may be
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needed in the model training process. The MUCO module could also be trained in a two stages
pipeline where the first stage is training the generative networks and obtaining the stable generated
samples. After that, the second stage is for the MUCO training where all networks are jointly
trained. This strategy could make the training procedure and the learning performance more stable.
We further provide the spatial complexity of our model which is 𝑂 (𝑑2

𝑙
+ 𝑑3

𝑙
). Specifically, the

spatial complexity of the correlation tensor is quadratic to the number of label candidates, which
is 𝑂 (𝑑2

𝑙
). In addition, the following 𝐶𝑀𝑈𝐶𝑂 (·) network where the input is the reshaped 𝐹𝐶𝑖 , and

the output is the final prediction results, which derives the 𝑂 (𝑑3
𝑙
) complexity. Thus, the overall

complexity of the MUCO module is 𝑂 (𝑑2
𝑙
+ 𝑑3

𝑙
). Our current model is able to handle the scenario

with more than 300-dimension labels, which could be deployed in various applications. However, if
there are a large number of labels, it would lead to potential high spatial complexity especially in
extreme multi-label scenario when millions of labels exist. We proposed two potential solutions
for this issue. First, the sparse constraint is a solution, since most of the pairwise labels are not
correlated, which means there are only a small partial of labels that are correlated with another
specific label. Second, the labels could be separately considered based on the semantic connections
via the assistant of general natural language processing approaches, where the potential correlated
labels could be explored locally, and then merged with other predictions for the final prediction.

4 EXPERIMENTS
Here, we utilize six multi-label datasets to test MUCO. State-of-the-art benchmarks are also evalu-
ated. Four different settings are deployed including traditional multi-label classification, zero-shot
multi-label classification, image retrieval, and image annotation. Below is the brief introductions of
the datasets, and the dataset summary is listed in Table 1.

• Corel5K Dataset [7] includes 4, 500 training samples and 499 testing samples. The samples
are extracted from the Corel CD Photo dataset. There are 260 candidate labels and the average
of 3.40 labels from each sample.

• ESP Game Dataset [40] deployed a human-machine interactive system for labeling. The
labeling process was designed to be similar to a computer game. ESP includes 18, 689 training
instances and 2, 081 instances for testing. There are 268 candidate labels, and 4.69 labels were
set to the instance on average.

• IAPRTC-12 Dataset [11] is used for the image retrieval task in the cross-language scenario.
This dataset contains 19, 627 samples including animals, actions, landscapes, and other objects.
These samples consist of 17, 665 instances for training and 1, 962 instances in the testing set.
There are 291 candidate labels, with an average of 5.72 labels per sample.

• SUN Dataset [32] contains scene images captured in various locations, such as playground,
classroom, and street. It has 717 different scene classes associated with 102 candidate labels,
with an average of 6.31 labels per sample. For the conventional setting, we randomly selected
6, 387 samples for training and 6, 513 samples for testing. In the zero-shot scenario, it contains
12, 900 training images and 1, 440 testing images as default.

• CUB Dataset [41] is a bird database containing 200 bird categories. Each image has an
average of 31.39 labels. In the conventional setting, more than 4, 000 images are set as training
and testing by random selection. For zero-shot setting, the numbers of training and testing
samples are 8, 842 and 2, 946.

• AWA Dataset [18] has around 30, 000 animal images of 50 different species. Each instance
has an average of 15 labels, and there are 85 candidate labels. The values in the label vector
are continuous in [0, 100]. Similarly, there are 12, 154 and 12, 141 images for training and
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Fig. 3. Long-tail label distribution of SUN dataset

Table 1. Datasets statistical summary

Datasets Setting Training Testing Label-dim Ave-label

Corel5K [7] Conventional 4,500 499 260 3.40
ESP Game [40] Conventional 18,689 2,081 268 4.69
IAPRTC-12 [11] Conventional 17,665 1,962 291 5.72

SUN [32] Conventional 6,387 6,513 102 6.31Zero-shot 12,900 1,440

CUB [41] Conventional 4,374 4,468 312 31.39Zero-shot 8,842 2,946

AWA [18] Conventional 12,154 12,141 85 15.00Zero-shot 24,295 6,180

testing respectively in the general setting, and 24, 295 and 6, 180 images for training and
testing in the zero-shot scenario.

In multi-label scenario, the long-tail label distribution is the unique challenge. We plot the
histogram of the label distributions of SUN dataset in Figure 3. It explicitly illustrates the significant
label imbalance situation. Specifically, the most common labels, man-made, exist in more than 8000
samples. However, there are only 74 samples which contain the label of fire.

4.1 Experimental Setup
For fair comparison, we follow the same feature extraction protocol proposed in [12] for ESP Game,
IAPRTC, and Corel5K which contains 15 different visual descriptors. For the rest fo the datasets, we
use the pre-trained VGG network [37] to obtain the deep representations. Since the range of AWA
dataset label is [0, 100], thus we multiply 100 after the Sigmoid activation output. As displayed in
Figure 2, the random noise vector and the conditional multi-label vector are concatenated together
as the input to the generator. Then, for the rest of our model, 𝜆, which is used to limit the feature
scales, is set to 20 for handcrafted representations [12] and 5 for VGG [37] deep representations.
In addition, 𝛼 is set to 0.01 empirically. Optimizer is set as the ADAM [16] method. Consider the
different convergent speeds of different modules, for 𝐷 (·), 𝐶𝑀𝑈𝐶𝑂 (·), and 𝐶𝑀 (·) networks, we use
0.001, 0.00002, and 0.00002 respectively.
In the training procedure, all networks are assigned with random weights without any pre-

training step. We observed a slight performance vibration in the beginning as the iteration increased.
We consider this is due to the generator was not well trained. The vibration disappears soon and
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the performance becomes stable after around 5000 iterations. This end-to-end strategy requires
more stabilization designs including the similarity constraint and the classification similarity loss.
As we discussed above, a two-phases training strategy where the generative module is firstly
trained followed by the rest of the networks is also a potential solution. We tested the methods 5
times on the training and testing datasets, which are randomly separated from the samples to be
relatively even in sample size, then the average performance is reported. In our implementation,
the TensorFlow associated with the GPU acceleration are deployed.

4.2 Multi-label Classification
Seven state-of-the-art multi-label classification methods are set as baselines, and the details are
introduced below:

• Least Square Regression (LR) is a linear regression approach which aligns the labels with
the corresponding features. We set it as a basic baseline for the evaluation.

• Semi-SupervisedMulti-Label DimensionReduction (SSMLDR) [13] is a semi-supervised
approach. It improves the robustness and accuracy of the model with a label propagation
strategy that uses both the labeled and unlabeled samples.

• Fast Image Tagging (FastTag) [5] is an efficient approach. It aims to infer complete labels
from a list of incomplete ground-truth labels. Two linear projections are used to detect the
missing label and obtain final prediction results respectively.

• Multi-Label Mixed Graph (ML-PGD) [50] infers label set with missing labels, but through
a label dependency model constructed through class correlations.

• Semantic AutoEncoder (SAE) [17] recovers labels using a specifically designed auto-
encoder. The feature is projected to label space, and the labels are projected to the original
space. The weights are shared between features and labels.

• Adaptive Graph Guided Embedding (AG2E) [42] recovers multiple labels in the semi-
supervised scenario. A graph is proposed to adaptively explore and transfer the similarities
knowledge between label space and feature space.

• Generative Correlation Discovery Net (GCDN) [44] explored a discovery network to
reveal the relations of labels. Generation strategy is utilized to address the overfitting issues.

Since SSMLDR and AG2E are semi-supervised learning methods, the testing samples are set
as the unlabeled samples to test the results. For consistent comparison, we use the same metrics
adopted in [12]. We calculated the precision metric (Pre) 𝑃 and the recall metric (Rec) 𝑅, where
𝑃 =

𝑡𝑝

𝑡𝑝+𝑓𝑝 and 𝑅 =
𝑡𝑝

𝑡𝑝+𝑓𝑛 . 𝑡𝑝 is truth-positive. 𝑓𝑛 and 𝑓𝑝 denotes the false negative and the false
positive predictions. For easier comparison, we calculated the harmonic mean of the precision,
F1-score (F1), where 𝐹1 = 2𝑃×𝑅

𝑃+𝑅 . We provide the mAP (mean average precision) which used in [50].
The non-zero predicted labels (non-zero recall, N-R) is also reported in our experiments.

Table 2 illustrates the performance in conventional setting. As shown by the results, our MUCO
framework achieves higher performance compared with other methods, it obtains up to 5.2% and
7.8% improvements in precision and recall. The results demonstrate its accuracy and robustness.
Additionally, we further tested our model following the work of [50], which proposes an augmented
and more complete ground-truth labels for the ESP and Corel5K. [50] completes the labels of ESP
datasets from 4.69 labels per sample to 7.27 per sample, and Corel5K dataset from 3.40 per sample
to 4.84 per sample. The results, shown in Table 3, shows that the MUCO method still obtains higher
accuracy then most benchmarks.
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Table 2. Performance of conventional setting

Data Method Pre Rec F1 N-R mAP Data Method Pre Rec F1 N-R mAP

Corel

Regression 0.2859 0.3211 0.3025 128 0.3630

SUN

Regression 0.6209 0.1473 0.2457 102 0.6807
SSMLDR 0.2741 0.3366 0.3022 143 0.3410 SSMLDR 0.6879 0.1700 0.2726 102 0.6723
FastTag 0.3123 0.3657 0.3369 143 0.3871 FastTag 0.6816 0.1473 0.2457 102 0.6914
ML-PGD 0.2575 0.2911 0.2732 122 0.3727 ML-PGD 0.7110 0.1614 0.2631 101 0.7087
SAE 0.2962 0.3442 0.3184 141 0.3823 SAE 0.7183 0.1638 0.2668 98 0.7012
AG2E 0.3011 0.3520 0.3245 157 0.3568 AG2E 0.7685 0.1765 0.2871 99 0.6778
GCDN 0.3335 0.3714 0.3514 148 0.4417 GCDN 0.7985 0.1835 0.2985 102 0.7093
Ours 0.3230 0.3913 0.3539 151 0.4523 Ours 0.8013 0.1903 0.3076 102 0.7126

ESP

Regression 0.3793 0.2038 0.2653 215 0.3440

CUB

Regression 0.2010 0.0239 0.0428 157 0.0638
SSMLDR 0.3298 0.1885 0.2399 226 0.3156 SSMLDR 0.3410 0.0473 0.0832 178 0.2329
FastTag 0.4011 0.1927 0.2617 208 0.3904 FastTag 0.2147 0.0359 0.0615 167 0.3144
ML-PGD 0.3239 0.2012 0.2482 210 0.4077 ML-PGD 0.3334 0.0451 0.0794 155 0.3288
SAE 0.3861 0.1743 0.2402 194 0.3842 SAE 0.3383 0.0514 0.0908 196 0.3255
AG2E 0.3548 0.1525 0.2133 213 0.3730 AG2E 0.3409 0.0531 0.0911 190 0.3106
GCDN 0.4032 0.2178 0.2828 239 0.4327 GCDN 0.3718 0.0541 0.0944 214 0.3561
Ours 0.4224 0.2288 0.2969 239 0.4410 Ours 0.3912 0.0583 0.1014 223 0.3762

IAP

Regression 0.4287 0.2041 0.2765 199 0.4211

AWA

Regression 0.8798 0.0821 0.1500 75 0.8626
SSMLDR 0.3491 0.2520 0.2927 229 0.3981 SSMLDR 0.7812 0.0858 0.1546 67 0.8346
FastTag 0.4346 0.2267 0.2980 227 0.4596 FastTag 0.7861 0.0949 0.1694 72 0.8791
ML-PGD 0.4132 0.2441 0.3011 230 0.4674 ML-PGD 0.5395 0.0635 0.1136 57 0.9121
SAE 0.3537 0.2282 0.2774 213 0.4309 SAE 0.9683 0.0957 0.1742 73 0.9397
AG2E 0.3829 0.2330 0.2897 229 0.4353 AG2E 0.8483 0.0827 0.1507 73 0.9033
GCDN 0.4732 0.2648 0.3396 237 0.5295 GCDN 0.9716 0.0871 0.1599 83 0.9291
Ours 0.4812 0.2653 0.3420 237 0.5315 Ours 0.9787 0.0894 0.1638 83 0.9341

Table 3. Performance on augmented label sets

Data Methods Pre Rec F1 N-R mAP Data Methods Pre Rec F1 N-R mAP

Corel-A

Regression 0.2842 0.2304 0.2545 103 0.3762

ESP-A

Regression 0.3848 0.1256 0.1894 178 0.3913
SSMLDR 0.3036 0.2791 0.2908 134 0.3660 SSMLDR 0.3253 0.1697 0.2231 202 0.3357
FastTag 0.3329 0.3145 0.3234 136 0.4127 FastTag 0.3886 0.1531 0.2197 196 0.4254
ML-PGD 0.3245 0.3011 0.3124 140 0.4275 ML-PGD 0.3713 0.1184 0.1795 162 0.4211
SAE 0.3168 0.3037 0.3101 128 0.4192 SAE 0.3153 0.1425 0.1966 156 0.4050
AG2E 0.3273 0.3172 0.3221 143 0.3985 AG2E 0.3518 0.1492 0.2095 196 0.4030
GCDN 0.3438 0.3219 0.3325 138 0.4773 GCDN 0.4772 0.1944 0.2763 225 0.4436
Ours 0.3612 0.3081 0.3325 144 0.4792 Ours 0.4827 0.1953 0.2781 225 0.4512

4.3 Zero-shot Multi-label Classification
MUCO is tested in the zero-shot classification scenario, where categories of testing are not in the
training. This scenario is more difficult due to the significant distribution gaps between the training
and setting samples. We evaluate the results on the AWA, SUN, and CUB databases. These datasets
are split into training and testing samples by default. The SUN database has 645 training classes
and 72 testing classes. The AWA database contains 40 training categories and 10 testing categories.
Finally, The CUB database contains 150 training classes and 50 testing classes. Table 4 illustrates
the performances in this setting. It denotes that our method outperforms other benchmarks. This
zero-shot setting further demonstrates the robustness of our model when even unseen categories
are set as inputs. We consider this advantage makes our model more practical for deploying in
different applications without further task-specific modifications.

4.4 Model Analysis
The generative strategy is crucial in our approach. To further analyze its effectiveness, we visualize
10 unseen predicted labels of CUB classes with the visual features as the input for generation. In
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Table 4. Performance of zero-shot multi-label classification

Data Method Pre Rec F1 N-R mAP

SUN

Regression 0.7047 0.1548 0.2539 97 0.6616
SSMLDR 0.6637 0.1481 0.2422 95 0.6581
FastTag 0.6906 0.1522 0.2494 90 0.6706
ML-PGD 0.7037 0.1471 0.2433 95 0.6829
SAE 0.6978 0.1710 0.2747 100 0.6513
AG2E 0.7125 0.1618 0.2637 88 0.6693
GCDN 0.7531 0.1857 0.2979 101 0.6911
Ours 0.7825 0.1851 0.2994 101 0.7032

CUB

Regression 0.2600 0.0307 0.0549 160 0.2693
SSMLDR 0.2926 0.0383 0.0677 166 0.2329
FastTag 0.2231 0.0434 0.0726 143 0.2967
ML-PGD 0.2392 0.0365 0.0635 117 0.3178
SAE 0.2552 0.0469 0.0798 167 0.3102
AG2E 0.2808 0.0481 0.0821 163 0.2693
GCDN 0.3091 0.0488 0.0843 179 0.3264
Ours 0.3319 0.0507 0.0879 190 0.3345

AWA

Regression 0.7555 0.0766 0.1392 66 0.8809
SSMLDR 0.7017 0.0764 0.1378 66 0.7858
FastTag 0.8610 0.0912 0.1649 81 0.8918
ML-PGD 0.4338 0.0623 0.1091 49 0.8677
SAE 0.9015 0.0926 0.1679 78 0.8918
AG2E 0.8247 0.0811 0.1476 71 0.8874
GCDN 0.9249 0.0804 0.1480 83 0.8784
Ours 0.9382 0.0813 0.1542 83 0.8815

-50 -40 -30 -20 -10 0 10 20 30 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

Fig. 4. The visualization of the real and generated samples. Solid circle denotes real samples and hollow circle
denotes generated samples, and the different colors indicate different categories. The generated samples
effectively diversity the visual distribution around the real samples which illustrate the effectiveness of the
generative strategy.

our experiments, t-SNE [39] operation is deployed to project the high dimensional samples to the
2-dimensional for visualization. The results are shown in Figure 4, where the solid circles denote
the real samples, the hollow circles denote the generated samples, and different colors represent
different categories. From Figure 4, we can conclude that both the generated samples are close to
the corresponding read samples, which effectively extend the feature distribution.
A few ablation studies are done to evaluate the improvements of different combinations of

the proposed modules. Specifically, we remove the modules including the generative module, the
multi-label correlation learning module, and both. In addition, we also tested our model with a
basic network structure. In the experiment, a vanilla fully-connected network is used to replace
MUCO module, where the input is the initial predicted label vector, 𝑓𝑖 , and the output is the final
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Fig. 5. Ablation study of our approach. The performances in different iterations are shown as curves. Different
colors denote different models. The thick light color curve is the exact performance of each iteration, and the
darker color curve is the smoothed result which provides a more clear performance comparison. Specifically,
the red curve is our complete MUCO framework, the green curve ablated the generative module, the yellow
curve ablated the MUCO network, and the brown curve is the baseline which removed both the generative
and MUCO modules. In addition, we also show our previous GCDN approach (blue curve), and the approach
that replaces the MUCO module with a basic fully-connected network (purple curve). We can observe that
our complete MUCO framework clearly and considerably outperforms others.

0 0.5 1

0.2

0.25

0.3

P
re

ci
si

on

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0

R
ec

al
l

0.2 0.4 0.6 0.8 1
0

0.1

0.2

F
1

0.2 0.4 0.6 0.8
0

0.1

0.2
N

on
-Z

er
o

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

m
A

P

Fig. 6. The performance with different values of 𝛾 , where 𝛾 is proposed to tune the weights of 𝐶𝑀 (·) and
𝐶𝑀𝑈𝐶𝑂 (·). The results is obtain in the zero-shot scenario on the CUB database. This shows that the perfor-
mance remains stable until 𝛾 > 0.95, which shows the robustness of our MUCO framework.

prediction results. The performance of our previous work [44] is also visualized. The experimental
results on the CUB dataset are illustrated in Figure 5. It shows the performances of 5 metrics in
different iterations. The colors indicate different settings.

We can see that the complete MUCO module is robust and obtains the best compared with other
ablation models. This fact concludes that all the networks in our model are effective. Specifically, the
performance decreases if the generative strategy is removed. We assume it is due to the considerable
imbalanced and long-tail labels and that the generative model is considerably helpful in this scenario.
The simple network achieves good performance, but is still not comparable with our MUCOmodule.
It denotes the effectiveness of the MUCO structure in capturing the label correlation knowledge and
improving the learning performance. In addition, there is an interesting phenomenon where the
mAP performance decreases slightly as the iteration increases. We assume it is due to the network
being not well-trained.

As illustrated in Figure 5, the generative module is crucial for improving the learning performance.
In our above experiment, we set 𝜇 = 1, which means the weight of the generation is the same as the
real data for training the classifier. In this ablation experiment, we analyze the parameter sensitivity
of 𝜇. We tune 𝜇 in different value and the results are visualized in Figure 7 and listed in Table 6. We
observe that as the weight increases, the performance becomes better, and the performance tends
to be stable as the weight is around 1. When 𝜇 is too large, the performance decreases a little. The
result indicates that the generated samples are effective but still not as helpful as real data. From
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Table 5. MUCO module ablation study

Ablation networks Pre Rec F1 N-R mAP

None 0.3194 0.0435 0.0753 174 0.3216
1-layer MLP 0.1674 0.0394 0.0638 174 0.2187
2-layer MLP 0.3180 0.0470 0.0818 177 0.3233
3-layer MLP 0.3117 0.0480 0.0833 178 0.3225

Ours 0.3319 0.0507 0.0879 190 0.3345
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Fig. 7. 𝜇 is used to tune the objective weights between the real samples and the generated samples. We
observe that when 𝜇 is around 1 (which means the even weights of the generated and real samples), MUCO
achieves the best performance.

Table 6. Multi-label learning performance with different weights on the generated samples

Generative Weights 𝜇 Pre Rec F-1 N-R mAP

0.0 0.3388 0.0447 0.0790 206 0.3385
0.1 0.3562 0.0510 0.0892 211 0.3511
0.5 0.3814 0.0576 0.1001 218 0.3718
1.0 0.3912 0.0583 0.1014 218 0.3762
2.0 0.3954 0.0571 0.0998 219 0.3752
5.0 0.3891 0.0574 0.1000 216 0.3715

the results we conclude that 𝜇 being set around 1 is a reasonable and appropriate hyper-parameter
for most of the datasets.
𝛾 ∈ [0, 1] is another important hyper-parameter that balances the weights between 𝐶𝑀 (·)

and 𝐶𝑀𝑈𝐶𝑂 (·). To test the parameter sensitivity, we change 𝛾 from [0, 1] on the CUB dataset.
Figure 6 displays our performance results. By observation, our model is stable and high-performing
throughout 0 < 𝛾 < 0.95, indicating the general parameter insensitivity of our model. In the extreme
cases, if 𝛾 is around 1, 𝐶𝑀𝑈𝐶𝑂 (·) would not be trained, which leads the considerably performance
decrease. Following a similar line of reasoning, if 𝛾 is around 0, 𝐶𝑀 (.) is not given any control,
resulting in an inability for it to be optimized based on the supervision guidance. If 𝐶𝑀 (.) is not
specifically trained, the label correlation tensor is degraded to a regular feature extraction layer,
which would decrease to a general multi-layer network. With this logic, it is understandable why
the performance decreases when 𝛾 is close to 0. These results illustrate the necessity for training
both 𝐶𝑀 (·) and 𝐶𝑀𝑈𝐶𝑂 (·) jointly with multi-label supervision in our model. In the experiments,
results are achieved for all datasets with an empirically set value of 𝜆 = 0.5, implying that 0.5 is
robust to various datasets and no extra parameter tuning is required.
The essential insight of MUCO is to extract and utilize the correlations of labels via the label

correlation tensor. Technically a conventional multi-layer network could also achieve this goal,
so we replaced the MUCO module with a fully-connected neural network. Similarly, the initial
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Fig. 8. Image annotation case studies. For each sample, the target image and the predicted multiple labels
are illustrated. We utilize the Red font to show the incorrect results and the Black font to show the right
label predictions. In addition, some labels are missing in ground-truth while they are still reasonable for the
corresponding samples. We marked them as missing labels by Blue font. From the result we conclude that our
MUCO framework is able to robustly predict the given samples even in the more difficult zero-shot scenario.

prediction label vector is set as input and the outputs are the final predictions. The results are
listed in Table 5, where we tested networks with 1, 2, and 3-layers. From Table 5, we can see that
the performance of 1-layer network is low, and the 2-layer and 3-layer networks achieve higher
and similar performance. We conjecture that a one layer network is not capable of learning the
complicated correlations, while the performances of 2 and 3 layer networks are saturated. The
results demonstrate that our MUCO framework structure is more flexible and effective in capturing
correlation information than naive multi-layer fully-connected networks.

The MUCO module shares some similarities in high-level compared with the attention module.
The attention-based methods explores either the local or global connections in visual space, which
find the correlations between different labels and fine-tunes the overall performance. However,
our label correlation learning strategy explicitly creates the pairwise connections. It is a more
specific-designed module which focuses and only focuses on the label correlation challenges, which
would not be influenced by other aspects such as noise in visual space. To this end, we consider
our approach to be a more effective module for multi-label learning.

4.5 Image Annotation
Figure 8 shows image annotation results of the SUN dataset. Target images are displayed with their
corresponding recovered labels on the right. Label colors correspond to different levels of correctness.
Blue font indicates labels that are correct by our judgements, but not included in the ground truth.
Black font denotes correct labels according to ground truth, and red font indicates incorrectly
recovered labels. We can observe that most of the labels are correctly recovered. Moreover, there
are some new “correct” labels that emerged in the prediction results. These labels are initially
indistinguishable in the visual space, but the learned correlation knowledge enhances their scores
and allows them to eventually be discovered. The prediction results denote the robustness and
effectiveness of the MUCO framework.
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Fig. 9. Image retrieval case study. The left is the expected labels, and the rest are the retrieved images. To
intuitively illustrate the effectiveness of our approach, the categories of the images are not shown in the
training stage. The red number denotes the first incorrect retrieval of the given label. The results explicitly
show the MUCO effectiveness and its potential for practical and large-scale applications.
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Fig. 10. Comparison of the running time in the testing stage. Due to the parallel computing via GPU
acceleration, MUCO achieves similar efficiency compared with the fastest methods. It illustrates the the
feasibility of our MUCO framework in large scale tasks.

4.6 Image Retrieval
We analyze the retrieval results of MUCO. This task retrieves target samples from a given set. In
general, the samples used in retrieval can be either visualizations, signals, or sentences. Image
retrieval is widely deployed in application, such as searching engine, data mining, and human
identification. For our experiment, we are performing retrieval based on labels describing the
target images. The MUCO model first predicts labels to the target images. Afterwards, we can use
the ranking results to find the corresponding images for an inputted retrieval label. We test with
zero-shot settings. Figure 9 listed the extracted images. The target labels are listed on the left with
its retrieved images on the right. Because most of the top ranking samples were retrieved correctly,
we have intentionally selected the first incorrect results for each label to be displayed in the figure.
Each incorrect image is labeled with its ranking number in the bottom right corner. From Figure 9,
we can see that most images are retrieved correctly.
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4.7 Time consumption
Since our model is a deep learning model which could be computed in parallel via GPU acceleration,
the speed of our approach is fast compared to other conventional methods. To quantitatively
analyze the speed, we tested all the methods in the ESP dataset to infer 2081 testing samples. The
time consumption of all the benchmarks are shown in Figure 10. Our MUCO framework achieves
similar speed compared with the fastest methods (i.e., SAE). To this end, our MUCO framework is a
practical method for large-scale multi-label applications.

5 CONCLUSION
We designed a novel Generative Multi-label Correlation Learning (MUCO) network. MUCO deploys
the generative strategy, which borrows the visual components and generates more diverse samples
for the training procedure. It effectively addresses the small-scale dataset limitation and the long-tail
label distribution challenges. In addition, a specifically designed correlation learning structure
associated with the trainable correlation tensor is used to explore the connections across pairwise
labels, which effectively refines and considerably improves the prediction performance. In our
model, all the weights are optimized simultaneously in an end-to-end setting to obtain the best
performances and practicability. Multiple ablation analyses illustrate the contribution and efficiency
of the proposed modules.
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