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UNSUPERVISED GRAPH SIMILARITY 
LEARNING BASED ON STOCHASTIC 

SUBGRAPH SAMPLING 

RELATED APPLICATION INFORMATION 

[ 0001 ] This application claims priority to U.S. Provisional 
Patent Application No. 62 / 902,997 , filed on Sep. 20 , 2019 , 
incorporated herein by reference entirety . 

BACKGROUND 

Technical Field 

[ 0002 ] The present invention relates to learning similari 
ties between graphs , and , more particularly , to graph simi 
larity learning that uses stochastic subgraph sampling . 

[ 0008 ] FIG . 1 is a block diagram of a computer system that 
includes both legitimate applications and malware , in accor 
dance with an embodiment of the present invention ; 
[ 0009 ] FIG . 2 is a block / flow diagram of a process / system 
for detecting and responding to applications with abnormal 
behavior , in accordance with an embodiment of the present 
invention ; 
[ 0010 ] FIG . 3 is a block / flow diagram of determining 
graph distribution vectors of applications based on syscall 
graphs , in accordance with an embodiment of the present 
invention ; 
[ 0011 ] FIG . 4 is a block / flow diagram of subgraph sam 
pling from a syscall graph , in accordance with an embodi 
ment of the present invention ; 
[ 0012 ] FIG . 5 is a block / flow diagram of encoding sub 
graphs , in accordance with an embodiment of the present 
invention ; 
[ 0013 ] FIG . 6 is a block / flow diagram of fusing subgraph 
representations into a single syscall graph distribution vector 
in accordance with an embodiment of the present invention ; 
[ 0014 ] FIG . 7 is a block diagram of a malware detection 
system that compares application syscall graph distribution 
vectors to identify and respond to abnormal application 
behavior , in accordance with an embodiment of the present 
invention ; 
[ 0015 ] FIG . 8 is a diagram of an exemplary high - level 
neural network , in accordance with an embodiment of the 
present invention ; and 
[ 0016 ] FIG . 9 is a diagram of an implementation of the 
exemplary high - level neural network , in accordance with an 
embodiment of the present invention . 

Description of the Related Art 
[ 0003 ] Graph data structures represent relational informa 
tion in a variety of real - life applications . Evaluating the 
similarity between two graphs , particularly without super 
vision from pre - defined labels , can be challenging . 

SUMMARY 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

[ 0004 ] A method for detecting abnormal application 
behavior includes determining a vector representation of a 
first syscall graph that is generated by a first application , the 
vector representation including a representation of a distri 
bution of subgraphs of the first syscall graph . The vector 
representation of the first syscall graph is compared to one 
or more second syscall graphs that are generated by respec 
tive second applications to determine respective similarity 
scores . It is determined that the first application is behaving 
abnormally based on the similarity scores , and a security 
action is performed responsive to the determination that the 
first application is behaving abnormally . 
[ 0005 ] A system for detecting abnormal application 
behavior includes a hardware processor and a memory . The 
memory is configured to store a computer program that , 
when executed by the hardware processor , is configured to 
implement a graph vector model that determines a vector 
representation of a first syscall graph that is generated by a 
first application , the vector representation including a rep 
resentation of a distribution of subgraphs of the first syscall 
graph . A security console is configured to compare the 
vector representation of the first syscall graph to one or more 
second syscall graphs that are generated by respective 
second applications to determine respective similarity 
scores , to determine that the first application is behaving 
abnormally based on the similarity scores , and to perform a 
security action responsive to the determination that the first 
application is behaving abnormally . 
[ 0006 ] These and other features and advantages will 
become apparent from the following detailed description of 
illustrative embodiments thereof , which is to be read in 
connection with the accompanying drawings . 

[ 0017 ] Embodiments of the present invention may use , for 
example , inductive and unsupervised graph learning , includ 
ing , for example , subgraph sampling , subgraph encoding , 
and subgraph distribution embedding , to identify similarities 
between graphs . 
[ 0018 ] With subgraph sampling , the present embodiments 
can use a walk with earliest visit time to make substructure 
enumeration tractable , with rich loop information included . 
With subgraph encoding , the present embodiments can 
efficiently encode sampled subgraphs and represent the 
subgraphs as vectors . With subgraph distribution embed 
ding , the present embodiments can represent each input 
graph as a collection of vectors , and then encode the 
collection of vectors into a single distribution vector . When 
the underlying vectors of two different graphs are similar , 
then the graphs ' respective distribution vectors are similar to 
one another . The distance between two graphs can then be 
estimated using the distance between their respective distri 
bution vectors . 
[ 0019 ] Referring now to FIG . 1 , a diagram of an exem 
plary computer system is shown . The computer system 
includes a hardware layer 100 , with an operating system 102 
that provides an interface between the hardware layer 100 
and applications . A variety of legitimate software applica 
tions are shown , including a web browser 104 , a word 
processor 106 , and a video game 108. These functions are 
intended to be purely exemplary , and should not be con 
strued as being limiting . Also shown is malware 110. The 
legitimate applications may be distinguished from the mal 
ware 110 in that they may be installed with the consent of the 

BRIEF DESCRIPTION OF DRAWINGS 

[ 0007 ] The disclosure will provide details in the following 
description of preferred embodiments with reference to the 
following figures wherein : 
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user , and / or perform actions that the user intends , whereas 
the malware 110 may be installed covertly and may perform 
actions that are adverse to the user's interests . 
[ 0020 ] Each of the applications , both legitimate and mal 
ware , may communicate with the operating system via 
syscalls 120. These calls can instruct the operating system 
102 to perform any appropriate action , for example initiating 
a process , accessing a file stored on hardware 100 , reading 
and writing data , etc. 
[ 0021 ] Determining graph similarity has a variety of prac 
tical applications . In one example , a syscall graph can be 
generated for the various software applications , with nodes 
of the syscall graph representing system entities ( e.g. , pro 
cesses , files , sockets , etc. ) , node attributes representing 
profile information for entities ( e.g. , entity type , entity life 
time , etc. ) , edges representing interactions between entities , 
and edge attributes representing profile information of inter 
actions ( e.g. , creating a process , opening a file , etc. ) . Given 
a collection of syscall graphs for legitimate software , syscall 
graphs generated by malware 110 can be detected as being 
dissimilar from normal and expected graphs . The present 
embodiments can therefore be employed to identify which 
syscall graphs are dissimilar to the others , as described in 
greater detail below . 
[ 0022 ] Referring now to FIG . 2 , a method of identifying 
and responding to malware is shown . Block 202 collects 
syscall information from the applications on a computer 
system , which includes syscalls 120 from legitimate appli 
cations and potentially also syscalls from malware . As noted 
above , these syscalls 120 can reflect any appropriate action 
within the computer system , and can include information 
relating to an originating process , a target , and a type of 
action . The syscalls 120 can be collected by the operating 
system 102 , or by another application installed on the 
computer system . 
[ 0023 ] Block 204 determines graph distribution vectors 
from the syscalls 120 , as will be described in greater detail 
below . Block 206 then compares the graph distribution 
vectors , using any appropriate similarity metric to generate 
similarity scores . For example , the cosine similarity can be 
used to determine the degree to which one graph distribution 
vector is similar to another . Each graph distribution vector 
can be compared to every other graph distribution vector , or 
alternatively only to representative vectors of clusters of 
graph distribution vectors . To that end , the graph distribution 
vectors can be clustered using any appropriate clustering 
process . 

[ 0024 ] Block 208 identifies anomalous graphs , based on 
the similarity scores of each of the graph distribution vec 
tors . In some embodiments , anomalous graphs may be 
identified as those that have a graph distribution vector with 
associated similarity scores that are all below a similarity 
threshold to the graph distribution vectors of respective 
other graphs . The below - threshold similarity scores indicate 
that the graph distribution vector of the anomalous graph 
does not behave like any other recorded application syscall 
graph . In some embodiments , a second threshold may be 
used to characterize further anomalous graphs , representing 
for example a minimum number of dissimilar graphs , or a 
maximum number of similar graphs , to qualify as an anoma 
lous graph . In such embodiments , a small number of similar 
graphs ( e.g. , other malware processes ) may be permitted 
while still recognizing the graph as being anomalous . 

[ 0025 ] Block 210 then performs a security action , respon 
sive to the detection of one or more anomalous graphs . 
Because these graphs may correspond to malware , block 
210 may , for example , stop the associated process ( es ) , or 
may quarantine the associated process ( es ) , for example by 
preventing the processes from accessing other processes or 
stored information . In some embodiments , the security 
action may furthermore include creating logs that represent 
the activities of the identified malware for subsequent analy 
sis . The activities can be analyzed to , for example , identify 
information that has been leaked ( e.g. , passwords or other 
identifying information ) . 
[ 0026 ] Referring now to FIG . 3 , additional detail on block 
204 is shown . Block 302 performs subgraph sampling , 
taking the syscall graphs as input and producing respective 
sets of subgraphs . Each subgraph can be implemented as a 
walk with earliest visit time , sampling partial information 
from the input graph , as described in greater detail below . 
[ 0027 ] Block 304 then performs subgraph encoding , using 
the subgraphs generated by block 302. Sequence encoding , 
for example , may be used to produce a vector representation 
of each subgraph . Block 306 then fuses subgraph represen 
tations for each input graph into a single respective vector 
representation , and block 308 forms vector representations 
for the input graphs , as will be described in greater detail 
below . 
[ 0028 ] It should be understood that , although the determi 
nation of graph distribution vectors in block 204 is described 
in the specific context of malware detection , these processes 
can be applied to any appropriate application . For example , 
any type of abnormal behavior may be detected , for example 
in the event of a system malfunction or an incorrect input . 
[ 0029 ] Referring now to FIG . 4 , additional detail is pro 
vided regarding subgraph sampling 302. Block 402 samples 
subgraphs from an input graph . For example , given a fixed 
length k a walk W can be sampled from an input graph G by 
randomly selecting a starting node from G , and iteratively 
then moving from the last node to a random neighbor node , 
continuing until the length k is reached . The attributes of the 
walk W can be represented as a sequence Sa : Vo , ej , V1 , 22 , 
V2 , ... , eko Vk , where vi represents the node attribute ( s ) of 
the ith neighbor node , and e ; represents edge attribute of the 
ith visited edge . 
[ 0030 ] Block 404 then determines earliest time informa 
tion for the walk W , for example as a sequence Sz : to , t? , t22 

tko where t , represents the earliest visit time of the i 
node during the walk . For example , if a given node n is 
visited at times 2 and 5 , then tz = 2 and ts = 2 . Each walk W is 
represented by a tuple of the sequence Sa and the sequence 
Sz . In some embodiments , a particular walk can be expressed 
as a concatenation of two vectors x ) = [ x X , P ) ] , where 
® ) is the attribute information for the node visited at 

timestamp p , and x , ( P ) is the earliest visit time , for example 
expressed as a one - hot vector . 
[ 0031 ] This walk is distinct from a vanilla random walk in 
that a vanilla random walk includes coarser - granularity 
structural information , and have no information about visit 
history , nor detailed structural information related to loops 
and circles . In contrast , the walks of the present embodi 
ments may use earliest visit time to preserve loop informa 
tion in sampled subgraphs , with efficiency that is similar to 
a vanilla random walk encoding . 
[ 0032 ] Referring now to FIG . 5 , additional detail is pro 
vided regarding subgraph encoding 304. Block 502 trains a 

( P ) , 
ta 
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sequence encoder using , e.g. , an autoencoder system . If 
( SQS ) is a sampled subgraph , the subgraph may be encoded 
into a vector z by a function Eo : z = E . ( Sa , S. ) . In some 
embodiments , E , may be implemented as a recurrent neural 
network . The parameters o characterize the behavior of the 
encoding function Eq , and may , for example , represent 
neural network parameters . The vector z representation can 
be decoded using a decoding function Dy ( z ) to produce 
decoded subgraph ( S'Q , S ' :) , where Y represents parameters 
of the decoder function . In some embodiments , Dy may be 
implemented as a recurrent neural network . Thus , the sub 
graphs are encoded and then decoded , providing a decoded 
subgraph that may differ from the original subgraph . 
[ 0033 ] In this manner , a reconstruction error can be deter 
mined as L = | ( Sa , S . ) - ( S'S ' ) || . Using , for example , a sto 
chastic gradient descent based on back - propagation , the loss 
L can be minimized , bringing the decoded subgraph closer 
to the original subgraph . When a minimized error L has been 
obtained , the trained encoder function E , can be output . 
Block 504 then uses the trained encoder E , to encode the 
input sub - graphs , producing respective subgraph vector rep 
resentations . 
[ 0034 ] Referring now to FIG . 6 , additional detail is pro 
vided regarding fusing the subgraph representations 306 . 
Block 602 measures the vector distribution distance for a 
given input , where , for a given pair of input graphs G and 
G2 , respective distributions Qi and Q2 are determined . The 
distance between Qi and Q2 , which may characterize the 
similarity of the two graphs , may be determined as , for 
example , the maximum mean discrepancy ( MMD ) between 
the two distributions . 

[ 0035 ] Block 604 then trains the fusion function , for 
example using a multi - layer neural network to implement a 
fusion function Fop where Q denotes parameters of the 
network , and where the fusion determines a vector repre 
sentation of the distribution , g = F @ ( Q ) . To constrain g by the 
metric , an error value can be defined as : 

removable computer diskette , a random access memory 
( RAM ) , a read - only memory ( ROM ) , a rigid magnetic disk 
and an optical disk , etc. 
[ 0038 ] Each computer program may be tangibly stored in 
a machine - readable storage media or device ( e.g. , program 
memory or magnetic disk ) readable by a general or special 
purpose programmable computer , for configuring and con 
trolling operation of a computer when the storage media or 
device is read by the computer to perform the procedures 
described herein . The inventive system may also be consid 
ered to be embodied in a computer - readable storage 
medium , configured with a computer program , where the 
storage medium so configured causes a computer to operate 
in a specific and predefined manner to perform the functions 
described herein . 
[ 0039 ] A data processing system suitable for storing and / 
or executing program code may include at least one proces 
sor coupled directly or indirectly to memory elements 
through a system bus . The memory elements can include 
local memory employed during actual execution of the 
program code , bulk storage , and cache memories which 
provide temporary storage of at least some program code to 
reduce the number of times code is retrieved from bulk 
storage during execution . Input / output or I / O devices ( in 
cluding but not limited to keyboards , displays , pointing 
devices , etc. ) may be coupled to the system either directly or 
through intervening I / O controllers . 
[ 0040 ] Network adapters may also be coupled to the 
system to enable the data processing system to become 
coupled to other data processing systems or remote printers 

storage devices through intervening private or public 
networks . Modems , cable modem and Ethernet cards are just 
a few of the currently available types of network adapters . 
[ 0041 ] As employed herein , the term “ hardware processor 
subsystem ” or “ hardware processor ” can refer to a proces 
sor , memory , software or combinations thereof that cooper 
ate to perform one or more specific tasks . In useful embodi 
ments , the hardware processor subsystem can include one or 
more data processing elements ( e.g. , logic circuits , process 
ing circuits , instruction execution devices , etc. ) . The one or 
more data processing elements can be included in a central 
processing unit , a graphics processing unit , and / or a separate 
processor- or computing element - based controller ( e.g. , 
logic gates , etc. ) . The hardware processor subsystem can 
include one or more on - board memories ( e.g. , caches , dedi 
cated memory arrays , read only memory , etc. ) . In some 
embodiments , the hardware processor subsystem can 
include one or more memories that can be on or off board or 
that can be dedicated for use by the hardware processor 
subsystem ( e.g. , ROM , RAM , basic input / output system 
( BIOS ) , etc. ) . 
[ 0042 ] In some embodiments , the hardware processor 
subsystem can include and execute one or more software 
elements . The one or more software elements can include an 
operating system and / or one or more applications and / or 
specific code to achieve a specified result . 
[ 0043 ] In other embodiments , the hardware processor sub 
system can include dedicated , specialized circuitry that 
performs one or more electronic processing functions to 
achieve a specified result . Such circuitry can include one or 
more application - specific integrated circuits ( ASICs ) , field 
programmable gate arrays ( FPGAs ) , and / or programmable 
logic arrays ( PLAs ) . 

L = || MMD ( Q1 , Q2 ) - || 81-82 |||| 

where 81 and g2 are the respective fused vectors for Q? and 
Q2 . Using a stochastic gradient - based back - propagation 
training process , block 604 can optimize Fo by minimizing 
L. Then , using the trained fusion function , a single vector 
representation for each input graph can be obtained . 
[ 0036 ] Embodiments described herein may be entirely 
hardware , entirely software or including both hardware and 
software elements . In a preferred embodiment , the present 
invention is implemented in software , which includes but is 
not limited to firmware , resident software , microcode , etc. 
[ 0037 ] Embodiments may include a computer program 
product accessible from a computer - usable or computer 
readable medium providing program code for use by or in 
connection with a computer or any instruction execution 
system . A computer - usable or computer readable medium 
may include any apparatus that stores , communicates , 
propagates , or transports the program for use by or in 
connection with the instruction execution system , apparatus , 
or device . The medium can be magnetic , optical , electronic , 
electromagnetic , infrared , or semiconductor system ( or 
apparatus or device ) or a propagation medium . The medium 
may include a computer - readable storage medium such as a 
semiconductor or solid state memory , magnetic tape , a 
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[ 0044 ] These and other variations of a hardware processor 
subsystem are also contemplated in accordance with 
embodiments of the present invention . 
[ 0045 ] Referring now to FIG . 7 , a malware detection 
system 700 is shown . The system 700 includes a hardware 
processor 702 and a memory 704. An operating system 102 
runs using the hardware processor 702 and the memory 704 , 
and provides an interface between the hardware and legiti 
mate applications 706. Malware 110 may also be present , 
and may also use the operating system 102 for unintended 
and undesirable purposes . 
( 0046 ] The operating system 102 logs information from 
the legitimate applications 706 and the malware 110 , for 
example in the form of syscalls 708 , which may be stored in 
the memory 704. A graph vector model 710 uses graphs 
formed by the syscalls 708 to represent the processes of the 
legitimate applications 706 and the malware 110 as vectors . 
A security console 712 uses the vectors to identify abnormal 
application behavior , for example by identifying syscall 
graph vectors that are dissimilar to the vectors of legitimate 
applications 706 . 
[ 0047 ] Upon detection of an abnormal process , the secu 
rity console 712 may automatically take a variety of respon 
sive actions . For example , the security console 712 may halt 
the malware 110 , or may quarantine it , so that its syscalls can 
still be recorded for analysis without being able to access 
sensitive data or processes . The security console 712 can 
further provide an alert to a user or system administrator , and 
can perform additional security analysis on the malware 110 
to identify its origin . 
[ 0048 ] It should be understood that , although this embodi 
ment shows the graph vector model 710 and the security 
console 712 as being implemented on the same system as the 
operating system 102 and the malware 110 , it should be 
understood these can be implemented in a different hardware 
system , for example in a remote security monitoring system 
that manages an entire network of computer systems . In such 
embodiments , the logged syscalls 708 may be forwarded to 
the remote security monitoring system , and the remote 
security monitoring system may issue security action 
instructions to a local security agent on the monitored 
system . 
[ 0049 ] In some embodiments , the graph vector model 710 
may be implemented as an artificial neural network ( ANN ) 
is an information processing system that is inspired by 
biological nervous systems , such as the brain . The key 
element of ANNs is the structure of the information pro 
cessing system , which includes a large number of highly 
interconnected processing elements ( called “ neurons ” ) 
working in parallel to solve specific problems . ANNs are 
furthermore trained in - use , with learning that involves 
adjustments to weights that exist between the neurons . An 
ANN is configured for a specific application , such as pattern 
recognition or data classification , through such a learning 
process . 
[ 0050 ] Referring now to FIG . 8 , a generalized diagram of 
a neural network is shown . ANNs demonstrate an ability to 
derive meaning from complicated or imprecise data and can 
be used to extract patterns and detect trends that are too 
complex to be detected by humans or other computer - based 
systems . The structure of a neural network is known gen 
erally to have input neurons 802 that provide information to 
one or more " hidden " neurons 804. Connections 808 
between the input neurons 802 and hidden neurons 804 are 

weighted and these weighted inputs are then processed by 
the hidden neurons 804 according to some function in the 
hidden neurons 804 , with weighted connections 808 
between the layers . There may be any number of layers of 
hidden neurons 804 , and as well as neurons that perform 
different functions . There exist different neural network 
structures as well , such as convolutional neural network , 
maxout network , etc. Finally , a set of output neurons 806 
accepts and processes weighted input from the last set of 
hidden neurons 804 . 
[ 0051 ] This represents a " feed - forward ” computation , 
where information propagates from input neurons 802 to the 
output neurons 806. Upon completion of a feed - forward 
computation , the output is compared to a desired output 
available from training data . The error relative to the training 
data is then processed in “ feed - back ” computation , where 
the hidden neurons 804 and input neurons 802 receive 
information regarding the error propagating backward from 
the output neurons 806. Once the backward error propaga 
tion has been completed , weight updates are performed , with 
the weighted connections 808 being updated to account for 
the received error . This represents just one variety of ANN . 
[ 0052 ] Referring now to FIG . 9 , an artificial neural net 
work ( ANN ) architecture 900 is shown . It should be under 
stood that the present architecture is purely exemplary , and 
that other architectures or types of neural network may be 
used instead . The ANN embodiment described herein is 
included with the intent of illustrating general principles of 
neural network computation at a high level of generality and 
should not be construed as limiting in any way . 
[ 0053 ] Furthermore , the layers of neurons described below 
and the weights connecting them are described in a general 
manner and can be replaced by any type of neural network 
layers with any appropriate degree or type of interconnec 
tivity . For example , layers can include convolutional layers , 
pooling layers , fully connected layers , softmax layers , or 
any other appropriate type of neural network layer . Further 
more , layers can be added or removed as needed and the 
weights can be omitted for more complicated forms of 
interconnection . 
[ 0054 ] During feed - forward operation , a set of input neu 
rons 902 each provide an input signal in parallel to a 
respective row of weights 904. The weights 904 each have 
a respective settable value , such that a weight output passes 
from the weight 904 to a respective hidden neuron 906 to 
represent the weighted input to the hidden neuron 906. In 
software embodiments , the weights 904 may simply be 
represented as coefficient values that are multiplied against 
the relevant signals . The signals from each weight adds 
column - wise and flows to a hidden neuron 906 . 
[ 0055 ] The hidden neurons 906 use the signals from the 
array of weights 904 to perform some calculation . The 
hidden neurons 906 then output a signal of their own to 
another array of weights 904. This array performs in the 
same way , with a column of weights 904 receiving a signal 
from their respective hidden neuron 906 to produce a 
weighted signal output that adds row - wise and is provided to 
the output neuron 908 . 
[ 0056 ] It should be understood that any number of these 
stages may be implemented , by interposing additional layers 
of arrays and hidden neurons 906. It should also be noted 
that some neurons may be constant neurons 909 , which 
provide a constant output to the array . The constant neurons 
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909 can be present among the input neurons 902 and / or 
hidden neurons 906 and are only used during feed - forward 
operation . 
[ 0057 ] During back propagation , the output neurons 908 
provide a signal back across the array of weights 904. The 
output layer compares the generated network response to 
training data and computes an error . The error signal can be 
made proportional to the error value . In this example , a row 
of weights 904 receives a signal from a respective output 
neuron 908 in parallel and produces an output which adds 
column - wise to provide an input to hidden neurons 906. The 
hidden neurons 906 combine the weighted feedback signal 
with a derivative of its feed - forward calculation and stores 
an error value before outputting a feedback signal to its 
respective column of weights 904. This back propagation 
travels through the entire network 900 until all hidden 
neurons 906 and the input neurons 902 have stored an error 
value . 
[ 0058 ] During weight updates , the stored error values are 
used to update the settable values of the weights 904. In this 
manner the weights 904 can be trained to adapt the neural 
network 900 to errors in its processing . It should be noted 
that the three modes of operation , feed forward , back 
propagation , and weight update , do not overlap with one 
another . 
[ 0059 ] Reference in the specification to " one embodi 
ment ” or “ an embodiment ” of the present invention , as well 
as other variations thereof , means that a particular feature , 
structure , characteristic , and so forth described in connection 
with the embodiment is included in at least one embodiment 
of the present invention . Thus , the appearances of the phrase 
“ in one embodiment ” or “ in an embodiment ” , as well any 
other variations , appearing in various places throughout the 
specification are not necessarily all referring to the same 
embodiment . However , it is to be appreciated that features of 
one or more embodiments can be combined given the 
teachings of the present invention provided herein . 
[ 0060 ] It is to be appreciated that the use of any of the 
following “ / ” , “ and / or ” , and “ at least one of ” , for example , 
in the cases of " A / B ” , “ A and / or B ” and “ at least one of A 
and B ” , is intended to encompass the selection of the first 
listed option ( A ) only , or the selection of the second listed 
option ( B ) only , or the selection of both options ( A and B ) . 
As a further example , in the cases of “ A , B , and / or C ” and 
" at least one of A , B , and C ” , such phrasing is intended to 
encompass the selection of the first listed option ( A ) only , or 
the selection of the second listed option ( B ) only , or the 
selection of the third listed option ( C ) only , or the selection 
of the first and the second listed options ( A and B ) only , or 
the selection of the first and third listed options ( A and C ) 
only , or the selection of the second and third listed options 
( B and C ) only , or the selection of all three options ( A and 
B and C ) . This may be extended for as many items listed . 
[ 0061 ] The foregoing is to be understood as being in every 
respect illustrative and exemplary , but not restrictive , and 
the scope of the invention disclosed herein is not to be 
determined from the Detailed Description , but rather from 
the claims as interpreted according to the full breadth 
permitted by the patent laws . It is to be understood that the 
embodiments shown and described herein are only illustra 
tive of the present invention and that those skilled in the art 
may implement various modifications without departing 
from the scope and spirit of the invention . Those skilled in 
the art could implement various other feature combinations 

without departing from the scope and spirit of the invention . 
Having thus described aspects of the invention , with the 
details and particularity required by the patent laws , what is 
claimed and desired protected by Letters Patent is set forth 
in the appended claims . 
What is claimed is : 
1. A method for detecting abnormal application behavior , 

comprising : 
determining a vector representation of a first syscall graph 

that is generated by a first application , the vector 
representation including a representation of a distribu 
tion of subgraphs of the first syscall graph ; 

comparing the vector representation of the first syscall 
graph to one or more second syscall graphs that are 
generated by respective second applications to deter 
mine respective similarity scores ; 

determining that the first application is behaving abnor 
mally based on the similarity scores ; and 

performing a security action responsive to the determi 
nation that the first application is behaving abnormally . 

2. The method of claim 1 , wherein determining the vector 
representation of the first syscall graph includes sampling a 
plurality of sub - graphs from the first syscall graph . 

3. The method of claim 2 , wherein sampling the plurality 
of sub - graphs from the first syscall graph includes perform 
ing a walk with earliest visit time . 

4. The method of claim 2 , wherein determining the vector 
representation of the first syscall graph further includes 
encoding each of the plurality of sub - graphs as a vector . 

5. The method of claim 4 , wherein encoding each of the 
plurality of sub - graphs as a vector uses an encoding function 
that is implemented as a recurrent neural network . 

6. The method of claim 5 , wherein the recurrent neural 
network is trained using an autoencoder system . 

7. The method of claim 4 , wherein determining the vector 
representation of the first syscall graph further includes 
fusing multiple subgraph vectors into a single vector repre 
sentation for the first syscall graph . 

8. The method of claim 1 , determining that the first application is behaving abnormally includes determining 
that the first application has a below - threshold similarity to 
the second applications . 

9. The method of claim 1 , wherein the security action 
includes an action selected from the group consisting of 
terminating the first application , quarantining the first appli 
cation , and performing a security analysis on the first 
application . 

10. A system for detecting abnormal application behavior , 
comprising : 

a hardware processor ; 
a memory , configured to store a computer program that , 
when executed by the hardware processor , is config 
ured to implement a graph vector model that deter 
mines a vector representation of a first syscall graph 
that is generated by a first application , the vector 
representation including a representation of a distribu 
tion of subgraphs of the first syscall graph ; and 

a security console , configured to compare the vector 
representation of the first syscall graph to one or more 
second syscall graphs that are generated by respective 
second applications to determine respective similarity 
scores , to determine that the first application is behav 
ing abnormally based on the similarity scores , and to 
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perform a security action responsive to the determina 
tion that the first application is behaving abnormally . 

11. The system of claim 10 , wherein the graph vector 
model is further configured to sample a plurality of sub 
graphs from the first syscall graph . 

12. The system of claim 11 , wherein the graph vector 
model is further configured to perform a walk with earliest 
visit time . 

13. The system of claim 11 , wherein the graph vector 
model is further configured to encode each of the plurality 
of sub - graphs as a vector . 

14. The system of claim 13 , wherein the graph vector 
model is further configured to use an encoding function that 
is implemented as a recurrent neural network . 

15. The system of claim 14 , wherein the recurrent neural 
network is trained using an autoencoder system . 

16. The system of claim 13 , wherein the graph vector 
model is further configured to fuse multiple subgraph vec 
tors into a single vector representation for the first syscall 
graph . 

17. The system of claim 10 , wherein the security console 
is further configured to determine that the first application 
has a below - threshold similarity to the second applications . 

18. The system of claim 10 , wherein the security console 
is further configured to perform a security action that 
includes one or more actions selected from the group 
consisting of termination of the first application , quarantine 
of the first application , and a security analysis on the first 
application . 


