
US 20210089652A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0089652 A1

Zong et al . (43) Pub . Date : Mar. 25 , 2021

(54) UNSUPERVISED GRAPH SIMILARITY
LEARNING BASED ON STOCHASTIC
SUBGRAPH SAMPLING

(52) U.S. CI .
CPC G06F 21/56 (2013.01) ; GO6K 9/6296

(2013.01) ; G06N 3/049 (2013.01) ; G06K
9/6215 (2013.01) ; GO6K 9/6288 (2013.01) ;

GO6K 9/6202 (2013.01) (71) Applicant : NEC Laboratories America , Inc. ,
Princeton , NJ (US)

(72) Inventors : Bo Zong , West Windsor , NJ (US) ;
Haifeng Chen , West Windsor , NJ (US) ;
Lichen Wang , Malden , MA (US)

ABSTRACT (57)

(21) Appl . No .: 17 / 017,048

(22) Filed : Sep. 10 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 902,997 , filed on Sep.

20 , 2019 .

Methods and systems for detecting abnormal application
behavior include determining a vector representation of a
first syscall graph that is generated by a first application , the
vector representation including a representation of a distri
bution of subgraphs of the first syscall graph . The vector
representation of the first syscall graph is compared to one
or more second syscall graphs that are generated by respec
tive second applications to determine respective similarity
scores . It is determined that the first application is behaving
abnormally based on the similarity scores , and a security
action is performed responsive to the determination that the
first application is behaving abnormally .

Publication Classification
(51) Int . Ci .

G06F 21/56 (2006.01)
GO6K 9/62 (2006.01)
GOON 3/04 (2006.01)

Web
browser
104 Video

game
108 120

MALWARE
110 Word

processor
106

Operating system
102

Hardware
100

Patent Application Publication Mar. 25 , 2021 Sheet 1 of 8 US 2021/0089652 A1

Web
browser
104 Video

game
108 120

MALWARE
110 Word

processor
106

Operating system
102

Hardware
100

FIG . 1

Patent Application Publication Mar. 25 , 2021 Sheet 2 of 8 US 2021/0089652 A1

Collect syscall information
202

Determine graph distribution
vectors
204

Compare graph distribution
vectors
206

Identify anomalous graphs
208

Perform security action
210

FIG . 2

Patent Application Publication Mar. 25 , 2021 Sheet 3 of 8 US 2021/0089652 A1

Subgraph sampling
302

Subgraph encoding
304

Fusing subgraph representations
306

Forming vector representations
for input graphs

308

Determine graph distribution vectors
204

FIG . 3

Patent Application Publication Mar. 25 , 2021 Sheet 4 of 8 US 2021/0089652 A1

Sample subgraphs
from input graph

402

Determine earliest
visit time

404

Subgraph sampling
302

FIG . 4

Train sequence
encoder
502

Encode subgraph
as vector

504

Subgraph encoding
304

FIG . 5

Patent Application Publication Mar. 25 , 2021 Sheet 5 of 8 US 2021/0089652 A1

Measure vector
distribution distance

602

Train fusion function
604

Fusing subgraph
representations

306

FIG . 6

Patent Application Publication Mar. 25 , 2021 Sheet 6 of 8 US 2021/0089652 A1

Hardware
processor Memory

704

Legitimate
applications

706 702

Graph vector
model
710

Logged
syscalls
708

Operating
system
102

H
Security
console
712

Malware
110

Malware detection system
700

FIG . 7

Patent Application Publication Mar. 25 , 2021 Sheet 7 of 8 US 2021/0089652 A1

Hidden
804

Input
802

Hidden
804

Output
806

Input
802

Hidden
804

Output
806

Input
802

808
Hidden
804

FIG . 8

Patent Application Publication Mar. 25 , 2021 Sheet 8 of 8 US 2021/0089652 A1

900

Input
902

W
904

W
904

W
904

W
904

Input
902

W
904

W
904

W
904

W
904

Input
902

W
904

W
904

W
904

W
904

Const
909

Hidden
906

Hidden
906

Hidden
906

Hidden
906

W
904

W
904

W
904

W
904

W
904

Output
908

W
904

W
904

W
904

W
904

W
904

Output
908

FIG . 9

US 2021/0089652 A1 Mar. 25 , 2021
1

UNSUPERVISED GRAPH SIMILARITY
LEARNING BASED ON STOCHASTIC

SUBGRAPH SAMPLING

RELATED APPLICATION INFORMATION

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62 / 902,997 , filed on Sep. 20 , 2019 ,
incorporated herein by reference entirety .

BACKGROUND

Technical Field

[0002] The present invention relates to learning similari
ties between graphs , and , more particularly , to graph simi
larity learning that uses stochastic subgraph sampling .

[0008] FIG . 1 is a block diagram of a computer system that
includes both legitimate applications and malware , in accor
dance with an embodiment of the present invention ;
[0009] FIG . 2 is a block / flow diagram of a process / system
for detecting and responding to applications with abnormal
behavior , in accordance with an embodiment of the present
invention ;
[0010] FIG . 3 is a block / flow diagram of determining
graph distribution vectors of applications based on syscall
graphs , in accordance with an embodiment of the present
invention ;
[0011] FIG . 4 is a block / flow diagram of subgraph sam
pling from a syscall graph , in accordance with an embodi
ment of the present invention ;
[0012] FIG . 5 is a block / flow diagram of encoding sub
graphs , in accordance with an embodiment of the present
invention ;
[0013] FIG . 6 is a block / flow diagram of fusing subgraph
representations into a single syscall graph distribution vector
in accordance with an embodiment of the present invention ;
[0014] FIG . 7 is a block diagram of a malware detection
system that compares application syscall graph distribution
vectors to identify and respond to abnormal application
behavior , in accordance with an embodiment of the present
invention ;
[0015] FIG . 8 is a diagram of an exemplary high - level
neural network , in accordance with an embodiment of the
present invention ; and
[0016] FIG . 9 is a diagram of an implementation of the
exemplary high - level neural network , in accordance with an
embodiment of the present invention .

Description of the Related Art
[0003] Graph data structures represent relational informa
tion in a variety of real - life applications . Evaluating the
similarity between two graphs , particularly without super
vision from pre - defined labels , can be challenging .

SUMMARY

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0004] A method for detecting abnormal application
behavior includes determining a vector representation of a
first syscall graph that is generated by a first application , the
vector representation including a representation of a distri
bution of subgraphs of the first syscall graph . The vector
representation of the first syscall graph is compared to one
or more second syscall graphs that are generated by respec
tive second applications to determine respective similarity
scores . It is determined that the first application is behaving
abnormally based on the similarity scores , and a security
action is performed responsive to the determination that the
first application is behaving abnormally .
[0005] A system for detecting abnormal application
behavior includes a hardware processor and a memory . The
memory is configured to store a computer program that ,
when executed by the hardware processor , is configured to
implement a graph vector model that determines a vector
representation of a first syscall graph that is generated by a
first application , the vector representation including a rep
resentation of a distribution of subgraphs of the first syscall
graph . A security console is configured to compare the
vector representation of the first syscall graph to one or more
second syscall graphs that are generated by respective
second applications to determine respective similarity
scores , to determine that the first application is behaving
abnormally based on the similarity scores , and to perform a
security action responsive to the determination that the first
application is behaving abnormally .
[0006] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof , which is to be read in
connection with the accompanying drawings .

[0017] Embodiments of the present invention may use , for
example , inductive and unsupervised graph learning , includ
ing , for example , subgraph sampling , subgraph encoding ,
and subgraph distribution embedding , to identify similarities
between graphs .
[0018] With subgraph sampling , the present embodiments
can use a walk with earliest visit time to make substructure
enumeration tractable , with rich loop information included .
With subgraph encoding , the present embodiments can
efficiently encode sampled subgraphs and represent the
subgraphs as vectors . With subgraph distribution embed
ding , the present embodiments can represent each input
graph as a collection of vectors , and then encode the
collection of vectors into a single distribution vector . When
the underlying vectors of two different graphs are similar ,
then the graphs ' respective distribution vectors are similar to
one another . The distance between two graphs can then be
estimated using the distance between their respective distri
bution vectors .
[0019] Referring now to FIG . 1 , a diagram of an exem
plary computer system is shown . The computer system
includes a hardware layer 100 , with an operating system 102
that provides an interface between the hardware layer 100
and applications . A variety of legitimate software applica
tions are shown , including a web browser 104 , a word
processor 106 , and a video game 108. These functions are
intended to be purely exemplary , and should not be con
strued as being limiting . Also shown is malware 110. The
legitimate applications may be distinguished from the mal
ware 110 in that they may be installed with the consent of the

BRIEF DESCRIPTION OF DRAWINGS

[0007] The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein :

US 2021/0089652 A1 Mar. 25 , 2021
2

user , and / or perform actions that the user intends , whereas
the malware 110 may be installed covertly and may perform
actions that are adverse to the user's interests .
[0020] Each of the applications , both legitimate and mal
ware , may communicate with the operating system via
syscalls 120. These calls can instruct the operating system
102 to perform any appropriate action , for example initiating
a process , accessing a file stored on hardware 100 , reading
and writing data , etc.
[0021] Determining graph similarity has a variety of prac
tical applications . In one example , a syscall graph can be
generated for the various software applications , with nodes
of the syscall graph representing system entities (e.g. , pro
cesses , files , sockets , etc.) , node attributes representing
profile information for entities (e.g. , entity type , entity life
time , etc.) , edges representing interactions between entities ,
and edge attributes representing profile information of inter
actions (e.g. , creating a process , opening a file , etc.) . Given
a collection of syscall graphs for legitimate software , syscall
graphs generated by malware 110 can be detected as being
dissimilar from normal and expected graphs . The present
embodiments can therefore be employed to identify which
syscall graphs are dissimilar to the others , as described in
greater detail below .
[0022] Referring now to FIG . 2 , a method of identifying
and responding to malware is shown . Block 202 collects
syscall information from the applications on a computer
system , which includes syscalls 120 from legitimate appli
cations and potentially also syscalls from malware . As noted
above , these syscalls 120 can reflect any appropriate action
within the computer system , and can include information
relating to an originating process , a target , and a type of
action . The syscalls 120 can be collected by the operating
system 102 , or by another application installed on the
computer system .
[0023] Block 204 determines graph distribution vectors
from the syscalls 120 , as will be described in greater detail
below . Block 206 then compares the graph distribution
vectors , using any appropriate similarity metric to generate
similarity scores . For example , the cosine similarity can be
used to determine the degree to which one graph distribution
vector is similar to another . Each graph distribution vector
can be compared to every other graph distribution vector , or
alternatively only to representative vectors of clusters of
graph distribution vectors . To that end , the graph distribution
vectors can be clustered using any appropriate clustering
process .

[0024] Block 208 identifies anomalous graphs , based on
the similarity scores of each of the graph distribution vec
tors . In some embodiments , anomalous graphs may be
identified as those that have a graph distribution vector with
associated similarity scores that are all below a similarity
threshold to the graph distribution vectors of respective
other graphs . The below - threshold similarity scores indicate
that the graph distribution vector of the anomalous graph
does not behave like any other recorded application syscall
graph . In some embodiments , a second threshold may be
used to characterize further anomalous graphs , representing
for example a minimum number of dissimilar graphs , or a
maximum number of similar graphs , to qualify as an anoma
lous graph . In such embodiments , a small number of similar
graphs (e.g. , other malware processes) may be permitted
while still recognizing the graph as being anomalous .

[0025] Block 210 then performs a security action , respon
sive to the detection of one or more anomalous graphs .
Because these graphs may correspond to malware , block
210 may , for example , stop the associated process (es) , or
may quarantine the associated process (es) , for example by
preventing the processes from accessing other processes or
stored information . In some embodiments , the security
action may furthermore include creating logs that represent
the activities of the identified malware for subsequent analy
sis . The activities can be analyzed to , for example , identify
information that has been leaked (e.g. , passwords or other
identifying information) .
[0026] Referring now to FIG . 3 , additional detail on block
204 is shown . Block 302 performs subgraph sampling ,
taking the syscall graphs as input and producing respective
sets of subgraphs . Each subgraph can be implemented as a
walk with earliest visit time , sampling partial information
from the input graph , as described in greater detail below .
[0027] Block 304 then performs subgraph encoding , using
the subgraphs generated by block 302. Sequence encoding ,
for example , may be used to produce a vector representation
of each subgraph . Block 306 then fuses subgraph represen
tations for each input graph into a single respective vector
representation , and block 308 forms vector representations
for the input graphs , as will be described in greater detail
below .
[0028] It should be understood that , although the determi
nation of graph distribution vectors in block 204 is described
in the specific context of malware detection , these processes
can be applied to any appropriate application . For example ,
any type of abnormal behavior may be detected , for example
in the event of a system malfunction or an incorrect input .
[0029] Referring now to FIG . 4 , additional detail is pro
vided regarding subgraph sampling 302. Block 402 samples
subgraphs from an input graph . For example , given a fixed
length k a walk W can be sampled from an input graph G by
randomly selecting a starting node from G , and iteratively
then moving from the last node to a random neighbor node ,
continuing until the length k is reached . The attributes of the
walk W can be represented as a sequence Sa : Vo , ej , V1 , 22 ,
V2 , ... , eko Vk , where vi represents the node attribute (s) of
the ith neighbor node , and e ; represents edge attribute of the
ith visited edge .
[0030] Block 404 then determines earliest time informa
tion for the walk W , for example as a sequence Sz : to , t? , t22

tko where t , represents the earliest visit time of the i
node during the walk . For example , if a given node n is
visited at times 2 and 5 , then tz = 2 and ts = 2 . Each walk W is
represented by a tuple of the sequence Sa and the sequence
Sz . In some embodiments , a particular walk can be expressed
as a concatenation of two vectors x) = [x X , P)] , where
®) is the attribute information for the node visited at

timestamp p , and x , (P) is the earliest visit time , for example
expressed as a one - hot vector .
[0031] This walk is distinct from a vanilla random walk in
that a vanilla random walk includes coarser - granularity
structural information , and have no information about visit
history , nor detailed structural information related to loops
and circles . In contrast , the walks of the present embodi
ments may use earliest visit time to preserve loop informa
tion in sampled subgraphs , with efficiency that is similar to
a vanilla random walk encoding .
[0032] Referring now to FIG . 5 , additional detail is pro
vided regarding subgraph encoding 304. Block 502 trains a

(P) ,
ta

US 2021/0089652 A1 Mar. 25 , 2021
3

sequence encoder using , e.g. , an autoencoder system . If
(SQS) is a sampled subgraph , the subgraph may be encoded
into a vector z by a function Eo : z = E . (Sa , S.) . In some
embodiments , E , may be implemented as a recurrent neural
network . The parameters o characterize the behavior of the
encoding function Eq , and may , for example , represent
neural network parameters . The vector z representation can
be decoded using a decoding function Dy (z) to produce
decoded subgraph (S'Q , S ' :) , where Y represents parameters
of the decoder function . In some embodiments , Dy may be
implemented as a recurrent neural network . Thus , the sub
graphs are encoded and then decoded , providing a decoded
subgraph that may differ from the original subgraph .
[0033] In this manner , a reconstruction error can be deter
mined as L = | (Sa , S .) - (S'S ') || . Using , for example , a sto
chastic gradient descent based on back - propagation , the loss
L can be minimized , bringing the decoded subgraph closer
to the original subgraph . When a minimized error L has been
obtained , the trained encoder function E , can be output .
Block 504 then uses the trained encoder E , to encode the
input sub - graphs , producing respective subgraph vector rep
resentations .
[0034] Referring now to FIG . 6 , additional detail is pro
vided regarding fusing the subgraph representations 306 .
Block 602 measures the vector distribution distance for a
given input , where , for a given pair of input graphs G and
G2 , respective distributions Qi and Q2 are determined . The
distance between Qi and Q2 , which may characterize the
similarity of the two graphs , may be determined as , for
example , the maximum mean discrepancy (MMD) between
the two distributions .

[0035] Block 604 then trains the fusion function , for
example using a multi - layer neural network to implement a
fusion function Fop where Q denotes parameters of the
network , and where the fusion determines a vector repre
sentation of the distribution , g = F @ (Q) . To constrain g by the
metric , an error value can be defined as :

removable computer diskette , a random access memory
(RAM) , a read - only memory (ROM) , a rigid magnetic disk
and an optical disk , etc.
[0038] Each computer program may be tangibly stored in
a machine - readable storage media or device (e.g. , program
memory or magnetic disk) readable by a general or special
purpose programmable computer , for configuring and con
trolling operation of a computer when the storage media or
device is read by the computer to perform the procedures
described herein . The inventive system may also be consid
ered to be embodied in a computer - readable storage
medium , configured with a computer program , where the
storage medium so configured causes a computer to operate
in a specific and predefined manner to perform the functions
described herein .
[0039] A data processing system suitable for storing and /
or executing program code may include at least one proces
sor coupled directly or indirectly to memory elements
through a system bus . The memory elements can include
local memory employed during actual execution of the
program code , bulk storage , and cache memories which
provide temporary storage of at least some program code to
reduce the number of times code is retrieved from bulk
storage during execution . Input / output or I / O devices (in
cluding but not limited to keyboards , displays , pointing
devices , etc.) may be coupled to the system either directly or
through intervening I / O controllers .
[0040] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers

storage devices through intervening private or public
networks . Modems , cable modem and Ethernet cards are just
a few of the currently available types of network adapters .
[0041] As employed herein , the term “ hardware processor
subsystem ” or “ hardware processor ” can refer to a proces
sor , memory , software or combinations thereof that cooper
ate to perform one or more specific tasks . In useful embodi
ments , the hardware processor subsystem can include one or
more data processing elements (e.g. , logic circuits , process
ing circuits , instruction execution devices , etc.) . The one or
more data processing elements can be included in a central
processing unit , a graphics processing unit , and / or a separate
processor- or computing element - based controller (e.g. ,
logic gates , etc.) . The hardware processor subsystem can
include one or more on - board memories (e.g. , caches , dedi
cated memory arrays , read only memory , etc.) . In some
embodiments , the hardware processor subsystem can
include one or more memories that can be on or off board or
that can be dedicated for use by the hardware processor
subsystem (e.g. , ROM , RAM , basic input / output system
(BIOS) , etc.) .
[0042] In some embodiments , the hardware processor
subsystem can include and execute one or more software
elements . The one or more software elements can include an
operating system and / or one or more applications and / or
specific code to achieve a specified result .
[0043] In other embodiments , the hardware processor sub
system can include dedicated , specialized circuitry that
performs one or more electronic processing functions to
achieve a specified result . Such circuitry can include one or
more application - specific integrated circuits (ASICs) , field
programmable gate arrays (FPGAs) , and / or programmable
logic arrays (PLAs) .

L = || MMD (Q1 , Q2) - || 81-82 ||||

where 81 and g2 are the respective fused vectors for Q? and
Q2 . Using a stochastic gradient - based back - propagation
training process , block 604 can optimize Fo by minimizing
L. Then , using the trained fusion function , a single vector
representation for each input graph can be obtained .
[0036] Embodiments described herein may be entirely
hardware , entirely software or including both hardware and
software elements . In a preferred embodiment , the present
invention is implemented in software , which includes but is
not limited to firmware , resident software , microcode , etc.
[0037] Embodiments may include a computer program
product accessible from a computer - usable or computer
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system . A computer - usable or computer readable medium
may include any apparatus that stores , communicates ,
propagates , or transports the program for use by or in
connection with the instruction execution system , apparatus ,
or device . The medium can be magnetic , optical , electronic ,
electromagnetic , infrared , or semiconductor system (or
apparatus or device) or a propagation medium . The medium
may include a computer - readable storage medium such as a
semiconductor or solid state memory , magnetic tape , a

US 2021/0089652 A1 Mar. 25 , 2021
4

[0044] These and other variations of a hardware processor
subsystem are also contemplated in accordance with
embodiments of the present invention .
[0045] Referring now to FIG . 7 , a malware detection
system 700 is shown . The system 700 includes a hardware
processor 702 and a memory 704. An operating system 102
runs using the hardware processor 702 and the memory 704 ,
and provides an interface between the hardware and legiti
mate applications 706. Malware 110 may also be present ,
and may also use the operating system 102 for unintended
and undesirable purposes .
(0046] The operating system 102 logs information from
the legitimate applications 706 and the malware 110 , for
example in the form of syscalls 708 , which may be stored in
the memory 704. A graph vector model 710 uses graphs
formed by the syscalls 708 to represent the processes of the
legitimate applications 706 and the malware 110 as vectors .
A security console 712 uses the vectors to identify abnormal
application behavior , for example by identifying syscall
graph vectors that are dissimilar to the vectors of legitimate
applications 706 .
[0047] Upon detection of an abnormal process , the secu
rity console 712 may automatically take a variety of respon
sive actions . For example , the security console 712 may halt
the malware 110 , or may quarantine it , so that its syscalls can
still be recorded for analysis without being able to access
sensitive data or processes . The security console 712 can
further provide an alert to a user or system administrator , and
can perform additional security analysis on the malware 110
to identify its origin .
[0048] It should be understood that , although this embodi
ment shows the graph vector model 710 and the security
console 712 as being implemented on the same system as the
operating system 102 and the malware 110 , it should be
understood these can be implemented in a different hardware
system , for example in a remote security monitoring system
that manages an entire network of computer systems . In such
embodiments , the logged syscalls 708 may be forwarded to
the remote security monitoring system , and the remote
security monitoring system may issue security action
instructions to a local security agent on the monitored
system .
[0049] In some embodiments , the graph vector model 710
may be implemented as an artificial neural network (ANN)
is an information processing system that is inspired by
biological nervous systems , such as the brain . The key
element of ANNs is the structure of the information pro
cessing system , which includes a large number of highly
interconnected processing elements (called “ neurons ”)
working in parallel to solve specific problems . ANNs are
furthermore trained in - use , with learning that involves
adjustments to weights that exist between the neurons . An
ANN is configured for a specific application , such as pattern
recognition or data classification , through such a learning
process .
[0050] Referring now to FIG . 8 , a generalized diagram of
a neural network is shown . ANNs demonstrate an ability to
derive meaning from complicated or imprecise data and can
be used to extract patterns and detect trends that are too
complex to be detected by humans or other computer - based
systems . The structure of a neural network is known gen
erally to have input neurons 802 that provide information to
one or more " hidden " neurons 804. Connections 808
between the input neurons 802 and hidden neurons 804 are

weighted and these weighted inputs are then processed by
the hidden neurons 804 according to some function in the
hidden neurons 804 , with weighted connections 808
between the layers . There may be any number of layers of
hidden neurons 804 , and as well as neurons that perform
different functions . There exist different neural network
structures as well , such as convolutional neural network ,
maxout network , etc. Finally , a set of output neurons 806
accepts and processes weighted input from the last set of
hidden neurons 804 .
[0051] This represents a " feed - forward ” computation ,
where information propagates from input neurons 802 to the
output neurons 806. Upon completion of a feed - forward
computation , the output is compared to a desired output
available from training data . The error relative to the training
data is then processed in “ feed - back ” computation , where
the hidden neurons 804 and input neurons 802 receive
information regarding the error propagating backward from
the output neurons 806. Once the backward error propaga
tion has been completed , weight updates are performed , with
the weighted connections 808 being updated to account for
the received error . This represents just one variety of ANN .
[0052] Referring now to FIG . 9 , an artificial neural net
work (ANN) architecture 900 is shown . It should be under
stood that the present architecture is purely exemplary , and
that other architectures or types of neural network may be
used instead . The ANN embodiment described herein is
included with the intent of illustrating general principles of
neural network computation at a high level of generality and
should not be construed as limiting in any way .
[0053] Furthermore , the layers of neurons described below
and the weights connecting them are described in a general
manner and can be replaced by any type of neural network
layers with any appropriate degree or type of interconnec
tivity . For example , layers can include convolutional layers ,
pooling layers , fully connected layers , softmax layers , or
any other appropriate type of neural network layer . Further
more , layers can be added or removed as needed and the
weights can be omitted for more complicated forms of
interconnection .
[0054] During feed - forward operation , a set of input neu
rons 902 each provide an input signal in parallel to a
respective row of weights 904. The weights 904 each have
a respective settable value , such that a weight output passes
from the weight 904 to a respective hidden neuron 906 to
represent the weighted input to the hidden neuron 906. In
software embodiments , the weights 904 may simply be
represented as coefficient values that are multiplied against
the relevant signals . The signals from each weight adds
column - wise and flows to a hidden neuron 906 .
[0055] The hidden neurons 906 use the signals from the
array of weights 904 to perform some calculation . The
hidden neurons 906 then output a signal of their own to
another array of weights 904. This array performs in the
same way , with a column of weights 904 receiving a signal
from their respective hidden neuron 906 to produce a
weighted signal output that adds row - wise and is provided to
the output neuron 908 .
[0056] It should be understood that any number of these
stages may be implemented , by interposing additional layers
of arrays and hidden neurons 906. It should also be noted
that some neurons may be constant neurons 909 , which
provide a constant output to the array . The constant neurons

US 2021/0089652 A1 Mar. 25 , 2021
5

909 can be present among the input neurons 902 and / or
hidden neurons 906 and are only used during feed - forward
operation .
[0057] During back propagation , the output neurons 908
provide a signal back across the array of weights 904. The
output layer compares the generated network response to
training data and computes an error . The error signal can be
made proportional to the error value . In this example , a row
of weights 904 receives a signal from a respective output
neuron 908 in parallel and produces an output which adds
column - wise to provide an input to hidden neurons 906. The
hidden neurons 906 combine the weighted feedback signal
with a derivative of its feed - forward calculation and stores
an error value before outputting a feedback signal to its
respective column of weights 904. This back propagation
travels through the entire network 900 until all hidden
neurons 906 and the input neurons 902 have stored an error
value .
[0058] During weight updates , the stored error values are
used to update the settable values of the weights 904. In this
manner the weights 904 can be trained to adapt the neural
network 900 to errors in its processing . It should be noted
that the three modes of operation , feed forward , back
propagation , and weight update , do not overlap with one
another .
[0059] Reference in the specification to " one embodi
ment ” or “ an embodiment ” of the present invention , as well
as other variations thereof , means that a particular feature ,
structure , characteristic , and so forth described in connection
with the embodiment is included in at least one embodiment
of the present invention . Thus , the appearances of the phrase
“ in one embodiment ” or “ in an embodiment ” , as well any
other variations , appearing in various places throughout the
specification are not necessarily all referring to the same
embodiment . However , it is to be appreciated that features of
one or more embodiments can be combined given the
teachings of the present invention provided herein .
[0060] It is to be appreciated that the use of any of the
following “ / ” , “ and / or ” , and “ at least one of ” , for example ,
in the cases of " A / B ” , “ A and / or B ” and “ at least one of A
and B ” , is intended to encompass the selection of the first
listed option (A) only , or the selection of the second listed
option (B) only , or the selection of both options (A and B) .
As a further example , in the cases of “ A , B , and / or C ” and
" at least one of A , B , and C ” , such phrasing is intended to
encompass the selection of the first listed option (A) only , or
the selection of the second listed option (B) only , or the
selection of the third listed option (C) only , or the selection
of the first and the second listed options (A and B) only , or
the selection of the first and third listed options (A and C)
only , or the selection of the second and third listed options
(B and C) only , or the selection of all three options (A and
B and C) . This may be extended for as many items listed .
[0061] The foregoing is to be understood as being in every
respect illustrative and exemplary , but not restrictive , and
the scope of the invention disclosed herein is not to be
determined from the Detailed Description , but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws . It is to be understood that the
embodiments shown and described herein are only illustra
tive of the present invention and that those skilled in the art
may implement various modifications without departing
from the scope and spirit of the invention . Those skilled in
the art could implement various other feature combinations

without departing from the scope and spirit of the invention .
Having thus described aspects of the invention , with the
details and particularity required by the patent laws , what is
claimed and desired protected by Letters Patent is set forth
in the appended claims .
What is claimed is :
1. A method for detecting abnormal application behavior ,

comprising :
determining a vector representation of a first syscall graph

that is generated by a first application , the vector
representation including a representation of a distribu
tion of subgraphs of the first syscall graph ;

comparing the vector representation of the first syscall
graph to one or more second syscall graphs that are
generated by respective second applications to deter
mine respective similarity scores ;

determining that the first application is behaving abnor
mally based on the similarity scores ; and

performing a security action responsive to the determi
nation that the first application is behaving abnormally .

2. The method of claim 1 , wherein determining the vector
representation of the first syscall graph includes sampling a
plurality of sub - graphs from the first syscall graph .

3. The method of claim 2 , wherein sampling the plurality
of sub - graphs from the first syscall graph includes perform
ing a walk with earliest visit time .

4. The method of claim 2 , wherein determining the vector
representation of the first syscall graph further includes
encoding each of the plurality of sub - graphs as a vector .

5. The method of claim 4 , wherein encoding each of the
plurality of sub - graphs as a vector uses an encoding function
that is implemented as a recurrent neural network .

6. The method of claim 5 , wherein the recurrent neural
network is trained using an autoencoder system .

7. The method of claim 4 , wherein determining the vector
representation of the first syscall graph further includes
fusing multiple subgraph vectors into a single vector repre
sentation for the first syscall graph .

8. The method of claim 1 , determining that the first application is behaving abnormally includes determining
that the first application has a below - threshold similarity to
the second applications .

9. The method of claim 1 , wherein the security action
includes an action selected from the group consisting of
terminating the first application , quarantining the first appli
cation , and performing a security analysis on the first
application .

10. A system for detecting abnormal application behavior ,
comprising :

a hardware processor ;
a memory , configured to store a computer program that ,
when executed by the hardware processor , is config
ured to implement a graph vector model that deter
mines a vector representation of a first syscall graph
that is generated by a first application , the vector
representation including a representation of a distribu
tion of subgraphs of the first syscall graph ; and

a security console , configured to compare the vector
representation of the first syscall graph to one or more
second syscall graphs that are generated by respective
second applications to determine respective similarity
scores , to determine that the first application is behav
ing abnormally based on the similarity scores , and to

US 2021/0089652 A1 Mar. 25 , 2021
6

perform a security action responsive to the determina
tion that the first application is behaving abnormally .

11. The system of claim 10 , wherein the graph vector
model is further configured to sample a plurality of sub
graphs from the first syscall graph .

12. The system of claim 11 , wherein the graph vector
model is further configured to perform a walk with earliest
visit time .

13. The system of claim 11 , wherein the graph vector
model is further configured to encode each of the plurality
of sub - graphs as a vector .

14. The system of claim 13 , wherein the graph vector
model is further configured to use an encoding function that
is implemented as a recurrent neural network .

15. The system of claim 14 , wherein the recurrent neural
network is trained using an autoencoder system .

16. The system of claim 13 , wherein the graph vector
model is further configured to fuse multiple subgraph vec
tors into a single vector representation for the first syscall
graph .

17. The system of claim 10 , wherein the security console
is further configured to determine that the first application
has a below - threshold similarity to the second applications .

18. The system of claim 10 , wherein the security console
is further configured to perform a security action that
includes one or more actions selected from the group
consisting of termination of the first application , quarantine
of the first application , and a security analysis on the first
application .

