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Abstract

The potential of Open-Vocabulary Semantic Segmenta-
tion (OVSS) in few-shot scenarios is not fully explored due
to the complexity of extending few-shot concepts to seman-
tic segmentation tasks. To address this challenge, we pro-
pose Training-Free Mask Matching (TFM2), an efficient,
mask-based adapter method that enhances OVSS models for
the few-shot open vocabulary semantic segmentation task.
TFM2 is a key-value cache that explicitly designed for im-
age masks. We introduce three modules to construct and
refine the mask cache, subsequently enhancing the OVSS
mask classification performance. Comprehensive experi-
ments demonstrate that TFM2 improves the performance
of state-of-the-art OVSS methods by a margin of 1% to 5%
across different settings. Moreover, TFM2 is not limited to
any specific methods or backbones. This work underscores
the importance and potential of few-shot data in OVSS and
presents a significant step toward leveraging this potential.

1. Introduction
Semantic segmentation is a fundamental computer vision

task with many diverse applications, ranging from medical
imaging and autonomous driving to augmented reality. It
involves assigning a categorical label to every pixel. Tradi-
tional semantic segmentation methods belong to a close-set
setting, which assumes a predetermined set of class cate-
gories consistent between the training and testing datasets.
This assumption hinders the expansion of category numbers
during the inference stage. Such limitations pose practical
challenges where categories may include both seen and un-
seen elements. Seen elements are categories from training,
while unseen elements are new categories emerging post-
deployment. This limits applicability in practical environ-
ments. OVSS addresses this limitation by recognizing ar-
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Figure 1. Concept of TFM2. It effectively aligns the mask similar-
ity in visual space as well as the corresponding mask embeddings
in feature space. A mask cache is built to generate classification
logits, enhancing the final semantic segmentation prediction.

bitrary category regions through the development of vision-
and-language pre-trained (VLP) models.

VLP models and their applications [2, 3, 8, 18, 30, 31, 44,
50, 51, 64, 69, 70, 79, 80] have been developed to generate
robust cross-modal embeddings, demonstrating successful
performance across various computer vision tasks. Inspired
by their success, several OVSS methods have emerged,
leveraging VLP models to overcome the constraints inher-
ent in traditional semantic segmentation approaches. Most
OVSS methods [57, 59, 65] utilize the text embeddings of
VLP models to classify various mask proposals. By lever-
aging the power of text embeddings, OVSS methods can
effectively segment images with arbitrary categories. Re-
cent advancements use cache-based adapter networks to
address resource constraints, reducing the need for full-
network fine-tuning. Studies [49, 67, 68, 78] have shown
that training-free key-value cache models effectively im-
prove model performance with limited few-shot data. How-
ever, these models mainly use global image features. For
local mask regions, a common approach is to crop the mask
from the original image. Such a way inadvertently omits
the comprehensive global context of the image.

Our key insight identifies a gap in OVSS research: the
unexplored benefits of incorporating few-shot target do-
main data. Existing cache-based methods focus on global
features, overlooking the need for region-based features in



fine-grained segmentation. It is non-trivial to associate vi-
sual features with mask regions while ensuring high data
and parameter efficiency. We propose a novel approach,
Training-Free Mask Matching (TFM2), which addresses
these challenges by balancing task-specific performance
with open-set generalization, a capacity that is critical for
real-world applications. Unlike traditional closed-set seg-
mentation, our OVSS approach recognizes arbitrary cat-
egory masks, including unseen categories. Our method
enhances mask classification performance during seman-
tic segmentation inference, particularly in situations where
only a limited number of annotated masks are available for
the target categories. This reflects common real-world con-
ditions where re-training or fine-tuning models is impracti-
cal due to insufficient target category data. By using lim-
ited data for accurate inference, TFM2 bridges the gap be-
tween theoretical training and practical application, enhanc-
ing segmentation performance and flexibility.

As shown in Fig. 1, TFM2 utilizes the few-shot masks
to build up the training-free key-value mask cache, which
is able to enhance the mask proposal classification perfor-
mance of the trained OVSS model during inference. It
is formed via three modules: a Dynamic Filter module, a
Channel Reduction module, and a Feature Alignment mod-
ule. Each of these contributes to the construction and re-
finement of the mask cache. TFM2 is highly adaptable —
it can easily adjust to newly added segmentation classes by
updating cache key-value pairs for new regions, facilitating
efficient and convenient continual model expansion. Our
contributions are summarized as follows:

• We design a key-value mask cache based on limited
few-shot data that improves upon open-vocabulary se-
mantic segmentation metrics in a training-free manner.

• We employ three modules: Dynamic Filter, Channel
Reduction, and Feature Alignment to further refine the
mask cache, leading to enhanced mask cache.

• Comprehensive experiments demonstrate the strong
generalization ability of our training-free TFM2 on
various models, backbones and datasets.

2. Related Work

2.1. Zero-Shot or Few-Shot Semantic Segmentation

Traditional semantic segmentation methods [1] clas-
sify each pixel in an image into a set category. Mask-
Former [14] innovatively divides this task into mask gener-
ation and mask classification, showing competitive perfor-
mance against traditional FCN-based methods [12, 43, 62].
Mask2Former [13] employs a mask-attention mechanism to
focus on relevant image regions, with architecture based on
DETR [9]. There are also some works [21, 25, 26, 29, 34–
36, 61, 63, 66, 71, 77] that paid attention to the few-shot se-
mantic segmentation task. In the common configurations

for zero/few-shot semantic segmentation, classes are par-
titioned into training and testing sets without overlapping.
This setup is designed to evaluate the ability of a model
to generalize to unseen classes during testing. While these
methods have taken care of the masks between the training
and testing phases, there remains a critical drawback: the
images used for testing may have been seen by the model,
which is unfair for evaluation.

2.2. Open-Vocabulary Semantic Segmentation

Unlike traditional semantic segmentation, recent open-
vocabulary segmentation works [4, 5, 11, 15, 15, 32, 38, 39,
41, 46, 52–54, 57–59, 72, 73] showed it can handle unseen
categories, making it closer to real-world scenarios. The
pioneering work [72] learns a joint embedding from visual
and word features for concepts and images. SimSeg [59]
proposes a two-stage framework to decouple the task into
class-agnostic mask generation and mask category classi-
fication. SAN [57, 58] separates mask recognition from
mask prediction using a side-adapter network that learns
from frozen CLIP features. FOSSIL [4] focuses on unsu-
pervised settings by leveraging a text-conditioned diffusion
model to generate visual embeddings, which significantly
enhance retrieval inference performance. OVSeg [32] ad-
dresses CLIP’s limitations in classifying masked regions for
semantic segmentation tasks by fine-tuning the CLIP with
the COCO-Caption dataset. MaskCLIP [73] treating mask
proposals as the attention mask in the CLIP for compu-
tational efficiency. SegCLIP [38] is a CLIP-based model
that can be trained with annotation-free image-text pairs
for weakly-supervised semantic segmentation. FreeDA [5]
leveraged the diffusion model to strengthen fine-grained re-
lationships between visual regions and semantic classes,
further enhancing local-global similarities during semantic
segmentation inference. However, they always require re-
training extra parameters or require extra pre-trained mod-
els. Both of which incur relatively high computation costs.
Our work builds on top of open-vocabulary segmentation
models to use limited few-shot masks to boost performance
on the target dataset in a training-free fashion.

2.3. Adapter for Few-Shot Learning.

Vision-and-Language Pre-trained (VLP) models provide
the transferability of few-shot learning. Some methods rely
on utilizing prompt learning to enhance the VLP perfor-
mance. For example, CoOp [76] designed a set of learnable
prompt tokens for the text encoder to improve the image
classification performance. CoCoOp [75] proposed an ex-
tra network to generate image tokens for text features based
on CoOp, which is targeted at generating input-conditional
prompts. CLIP-Adapter [19] was proposed as an alterna-
tive to prompt-based approaches for few-shot image clas-
sification tasks. By fine-tuning extra layers with the de-
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Figure 2. The framework of TFM2. It utilizes the few-shot masks to construct the Mask Cache. The Dynamic Filter and Channel Reduction
modules refine the key of Mask Cache, while the Feature Alignment module refines the value of Mask Cache. During the inference stage,
TFM2 will provide the Cache logits for mask proposals. The original classification logits will be fused with Cache logits to further enhance
the semantic segmentation results. In the figure, the blue arrows illustrate the process of building and refining the mask cache using the
three modules. The green and orange arrows represent the inference steps of a frozen OVSS model given a test image. The red arrows
depict the fusion of mask proposal logits between the OVSS classifier and TFM2, resulting in the final prediction with mask proposals.

signed residual connections, CLIP-Adapter achieves simi-
lar or even better performance on multiple few-shot image
classification datasets. Inspired by the similarity-based re-
trieval ideas, Zhang et al. proposed the training-free adap-
tion method termed Tip-Adapter [68]. Tip-Adapter con-
structs the adapter by key-value cache model from few-shot
training images while keeping the CLIP frozen.

To further incorporate diverse pre-training knowledge to
assist few-shot image classification, CaFo [67] was pro-
posed in the style of combining GPT3 [6], CLIP [44],
DINO [10] and DALL-E [45]. It utilizes the GPT3 to gen-
erate text prompts, which are the input of DALL-E to gen-
erate pseudo images for each class. The generated im-
ages and real training images will be mixed to build up
the cache model by using CLIP and DINO visual features.
SuS-X [49] constructs the support set to infuse the visual
information and consider the distances to further improve
the prediction of the model. APE [78] is a prior refinement
approach focusing on refining pre-trained CLIP visual fea-
tures. It maintains the trilateral affinity relations among the
testing image visual feature, text features, and training im-
age visual features in the computational efficiency fashion.

However, these methods are designed only for the few-
shot image classification scenario, which requires only the
image-level features to build up the cache. How to achieve
mask adapter for high-performance semantic segmentation
is still not fully realized. Extending these adapters from
entire image-level features to mask-level features is still
under-explored. Unlike these Adapter works, we propose
TFM2 by exploring how to build up a key-value cache
specifically for masks, resulting in a training-free and very
versatile method to enhance the pre-trained OVSS models.

3. Method
We show the framework of TFM2 in Fig. 2. The goal

of few-shot OVSS is to utilize limited few-shot masks from
the target dataset, further improving the performance of pre-
trained OVSS methods.

3.1. Mask Cache Construction

Generating the mask cache, which fully preserves the
visual-textual knowledge of the target object, is the crucial
step. To achieve this, feature-vector extraction in a com-
pact format is essential. Current mainstream OVSS mod-
els [32, 57, 59] typically employ two decoupled branches
to achieve semantic segmentation: one for mask prediction
and one for mask classification. To this end, we design a
specific way to extract mask features.

Given the K-shots N -classes reference masks (source
from the training split in the target dataset), we can ob-
tain their corresponding images denoted by I ∈ R3×W×H ,
where W represents the width of the image and H denotes
the height. It is crucial to highlight that these images only
offer the annotations of these provided K ·N mask regions.
The pre-trained OVSS model can generate the binary mask
proposals (by mask prediction branch) and corresponding
mask embeddings (by mask classification branch) as fol-
lows:

M̂I = MaskPrediction(I), (1)

V̂I = MaskEmbedding(I), (2)

where the M̂I ∈ {0, 1}M̂×W×H represents the binary mask
proposals, the M̂ is the number of predicted mask propos-
als. It can also be viewed as M̂I = [m̂1, m̂2, . . . , m̂M̂ ],



where m̂ ∈ {0, 1}W×H represents every individual binary
mask proposals. The V̂I ∈ RM̂×C are the C-dimensional
L2 normalized embeddings of predicted mask proposals.
It can also be viewed as V̂I = [v̂1, v̂2, . . . , v̂M̂ ], where
v̂ ∈ R1×C represents mask proposal visual embedding.

Besides the mask prediction part, the OVSS models also
utilize the text encoders from VLP models to do the mask
classification. This is achieved by concatenating each class
text embeddings wn ∈ R1×C of all categories, represented
as Wclassifier ∈ RN×C , where N is the number of classes in
the target dataset. These text embeddings are derived by in-
tegrating the class names into predefined sentence templates
and fed into text encoders of the VLP model. Subsequently,
the final category label logits are as follows:

L̂I = V̂I ×W⊤
classifier, (3)

where the L̂I ∈ RM̂×N is the classification logits for the
predicted mask proposals. For the OVSS task, the final seg-
mentation result of image I could be achieved by:

ŜI = L̂⊤
I × M̂I, (4)

where ŜI ∈ RN×W×H is the output in standard semantic
segmentation format. It will be used to do softmax and then
compared with ground truth to get the final performance.
Based on these, we designed one way to extract the mask
region-related visual features to further build up the mask
cache. Given the set of few-shot reference masks, M, we
first employ the Intersection over Union (IoU) between the
pre-trained model’s mask proposals M̂I from Eq. (1) and
the reference mask m ∈ M within the image I:

vm = v̂i,where i = argmax
i

{m ∩ m̂i

m ∪ m̂i
},∀i ∈ [1, M̂ ], (5)

where we calculate the IoU between the reference mask
m and every mask proposal m̂ ∈ M̂I . The feature of
the mask proposal with the highest IoU will be selected
as the reference mask feature. We average the visual fea-
tures of all K-shot reference mask regions (not images)
belonging to the same class to construct the class n mask
cache key vn = 1

K

∑K
k=1 vk. The vn represents the av-

eraged mask visual features of all K masks for a given
class n, where n ∈ [1, 2, . . . N ]. We then concatenate the
N class mask features together to form the key Ftrain =
[v1, v2, . . . , vN ], where the F ∈ RN×C are the full set
of keys of the mask cache model. We can also concate-
nate the one-hot label vectors as the set of mask cache val-
ues, Ytrain = OneHotLabel([Y1,Y2, . . . ,YN ]), where the
Ytrain ∈ {0, 1}N×N . The cache classification logits can be
obtained with key and value as:

L̂cache
I = V̂I × F⊤

train ×Ytrain, (6)

where the L̂cache
I represents the mask proposal classifica-

tion logits. The mask cache will measure the similarities
between the mask proposals and the cache keys, then use
the similarity scores to be multiplied by the cache values to
generate the final classification predictions. It leverages the
reference information from the reference masks to improve
mask proposal classification accuracy.

3.2. Intra-Class Dynamic Filter

Adding more samples might slightly improve perfor-
mance; however, it is not the primary goal of this paper, and
we have limited data available. Additionally, increasing the
number of samples could introduce more outliers and noise,
potentially affecting the results. Some outlier mask visual
features begin to manifest, influencing the key of the mask
cache since we average all mask features to form the key.

We introduce a way to selectively exclude uninforma-
tive reference mask visual features, particularly in the large
number of shots (like 16- and 32-shot) settings. In the K-
shots N -classes setting, we have K-many L2-normalized
training mask visual features, vn1 , v

n
2 , . . . , v

n
K for the class

n. For the k-th sample, we first calculate its averaged intra-
class cosine similarities to other samples in the same class
as sintra

vn
k

= 1
K−1

∑K
i=1,i̸=k dcos(v

n
k , v

n
i ). The dcos is the cal-

culation of cosine similarity between two mask visual fea-
tures. Based on that, we can get the overall classes’ average
intra-class cosines similarity for all K · N masks Sintra

global =
1

KN

∑K
i=1

∑N
j=1 s

intra
vj
i

. We can also calculate the class n

intra-class average cosine similarity Sintra
n = 1

K

∑K
i=1 s

intra
vn
i

.
When building up the mask cache’s keys for each class, we
filter out the samples vnk if their intra-class similarity svn

k
is

lower than both Sintra
global and Sn. After filtering out samples,

the new class key v′n would be:

v′n =

∑K
k=1 vk

|
∑K

k=1 vk|
, if vk is kept, (7)

where |
∑K

k=1 vk| is the number of remaining mask visual
features. Finally, the new cache key F′

train would be:

F′
train = [v′1, v

′
2, . . . , v

′
N ], (8)

Each key consists of all mask visual features filtered by the
designed standard based on intra-class similarity. In this
manner, the mask cache aims to capture and store the repre-
sentative visual features of each class in the keys.

3.3. Inter-Class Channel Reduction

The distribution of inter-class samples directly influ-
ences the classification boundaries of each category, which
is especially crucial in our training-free framework. Success
hinges on utilizing the VLP model, which incorporates joint
embeddings of both visual and textual features. However,



the VLP joint embeddings often encompass both domain-
irrelevant and redundant information due to the pre-training
process on large-scale noisy data. To address this issue, we
design an efficient way to select the most discriminative fea-
ture channels C ′ from the original VLP embeddings with
channels C by the standards of minimal inter-class similar-
ity and maximum inter-class variance.

We set a binary flag set B ∈ {0, 1}C , where Bc =
1(c = 1, 2, 3, . . . , C) represents whether the c-th element
in the feature vector will be kept. Notably, this B tar-
gets the feature channels of the mask cache, which pro-
vides mask classification logits. Since VLP models provide
strong joint-embedding feature space, the N category text
embeddings can approximate the visual prototypes for these
mask classes, which means we can view the N category text
embeddings as the visual clustering centers for all K mask
visual features. The optimization goal is to minimize the
inter-class similarity of K ·N masks as follows:

min
B

Sinter =

∑N
i=1

∑N
j=1
j ̸=i

dcos(wi ◦B, wj ◦B)

(N − 1)2
, (9)

where the wn ∈ R1×C is the text embedding of class n.
wi ◦ B means only keep the selected feature elements and
BBT = C ′. Since the text features are also L2-normalized,
we can calculate their inter-class channel similarities by:

Sinter =

C∑
c=1

Sinter
c =

C∑
c=1

∑N
i=1

∑N
j=1,j ̸=i t

i
ct

j
c

(N − 1)2
, (10)

where the c is the index of selected feature channels with
Bc = 1, tc represents the element of the text feature t at
channel c, the 1

N2

∑N
i=1

∑N
j=1,j ̸=i t

i
ct

j
c represents the aver-

age inter-class similarities of the c-th channel. Solving the
Eq. (9) optimization can be achieved by selecting the C ′

channels with the smallest inter-class similarities. We cal-
culate the inter-class channel variance for the channel c as:

V inter
c =

1

N

N∑
i=1

(tic − t̄c)
2, (11)

where t̄c represents the average variance of the c-th chan-
nel in class text embedding t. This variance criterion is se-
lecting the C ′ channels with the largest variances. Finally,
we consider both inter-class similarities and inter-class vari-
ance by a balance factor λ1 into the channels selection:

J inter
c = λ1S

inter
c − (1− λ1)V

inter
c , (12)

We select the C ′ with the smallest J inter
c for the final key

of the mask cache. The mask proposal visual features and
cache keys will be multiplied with B first to reduce the
channel dimension. The new mask cache classification log-
its for the mask proposals would be:

L̂cache
I = (V̂I ◦B)× (F′

train ◦B)⊤ ×Ytrain, (13)

where the (V̂I◦B) and (F′
train◦B) are reducing the dimen-

sions of the mask proposal features and cache keys. The
remaining feature channels focus on the most discrimina-
tive information, which is essential for accurately measur-
ing the similarity between mask proposals and cache keys.
This design can help the mask cache to improve the ability
to measure the similarity between mask proposals and keys.

3.4. Cache Value Feature Alignment

While the mask cache effectively links mask visual em-
beddings and text embeddings through keys and values, the
term (F′

train ◦ B) in Eq. (13) cannot accurately match the
one-hot labels Ytrain. This discrepancy necessitates the sub-
sequent multiplication of these terms with Ytrain. To regu-
larize the feature space, we compute the Kullback-Leibler
(KL) divergence for measuring the difference between the
distribution of the visual-text embedding similarities and
the one-hot labels. For evaluating the capacity of the mask
cache keys, we calculate the KL divergence as follows:

DKL = dKL(Ytrain, softmax(F′
train ◦B×W⊤

classifier)), (14)

where the dKL is the KL-divergence function and F′
train ◦

B × W⊤
classifier is measuring the similarity between visual

embedding and text embedding for each class. We use the
KL-divergence to measure the distribution gap between one
hot label and cache keys. Then we can further refine the
mask cache values by the KL-divergence score DKL:

Y′
train = Ytraine

(λ2DKL), (15)

where λ2 is the smoothing factor. e(λ2DKL) can be viewed
as a soft score for the mask cache value, indicating the in-
formation gap between the mask cache’s keys and values.

3.5. Mask Proposal Classification Logits Fusion

After applying the above three modules to refine the
keys and values of the mask cache, the final adaption of
TFM2 on the trained OVSS model can be achieved through
a weighted average of the original mask proposal classifica-
tion logits and the logits emanating from the cache model.
During the inference stage, the original mask proposal clas-
sification logits L̂origin can be achieved by Eq. (3). The mask
proposal visual features V̂I can serve as the queries for re-
trieval within TFM2, thus obtaining the mask cache logits
by Eq. (8), Eq. (13) and Eq. (15):

L̂cache
I = (V̂I ◦B)× (F′

train ◦B)⊤ ×Y′
train (16)

The new mask classification logits can be obtained by:

L̂final = λ3L̂origin + (1− λ3)L̂cache (17)

where λ3 is the balance factor that harmonizes the original
mask proposal classification logits and the mask cache clas-
sification logits. For the mask classification logits fusion,
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Figure 3. The mIoU of TFM2 with varying number of shots and recent SOTA OVSS methods on four datasets. In almost all cases, TFM2

improves the performance of multiple OVSS methods without additional training.

Method Pre-Trained Dataset Ensemble ADE-847 PC-459 ADE-150 PC-59

SimSeg (ECCV 2022) [59] COCO-Stuff Yes 6.8 8.8 20.2 47.3
OVSeg (CVPR 2023) [32] COCO-Stuff Yes 9.0 12.4 29.7 55.3
FC-CLIP (NeurIPS 2023) [65] COCO-Panoptic Yes 14.8 18.2 34.1 58.4
ALIGN (ICML 2021) [27] - No 4.8 5.8 12.9 22.4
GroupViT (CVPR 2022) [55] GCC [47] + YFCC [48] No 4.3 4.9 10.6 25.9
Kunyang et al. (ICCV 2023) [23] COCO-Panoptic No 3.5 7.1 18.8 45.2
OpenSeg (ECCV 2022) [20] COCO-Panoptic + COCO-Caption No 6.8 11.2 24.8 45.9
MaskCLIP (ICML 2023) [73] COCO-Panoptic No 8.2 10.0 23.7 45.9
SAN (CVPR 2023) [57] (ViT-B) COCO-Stuff No 10.2 16.7 27.6 54.1
SAN (CVPR 2023) [57] (ViT-L) COCO-Stuff No 12.6 19.9 32.0 56.3
ODISE (CVPR 2023) [56] COCO-Panoptic No 11.1 14.5 29.9 57.3
DeOp (ICCV 2023) [22] COCO-Panoptic No 7.1 9.4 22.9 48.8
MasQCLIP (ICCV 2023) [60] COCO-Panoptic No 10.7 18.2 30.4 57.8

SimSeg (ResNet101) COCO-Stuff Yes 6.8 8.8 20.2 47.3
SimSeg (ResNet101) + TFM2 COCO-Stuff Yes 7.0(+0.2) 9.9(+1.1) 22.4(+2.2) 50.4(+3.1)

OVSeg (Swin-B) COCO-Stuff Yes 9.0 12.4 29.7 55.3
OVSeg (Swin-B) + TFM2 COCO-Stuff Yes 9.5(+0.5) 12.6(+0.2) 31.0(+1.3) 58.1(+2.8)

SAN (ViT-B) COCO-Stuff No 10.2 16.7 27.6 54.1
SAN (ViT-B)+ TFM2 COCO-Stuff No 13.8(+3.6) 17.2(+0.5) 32.1(+4.5) 57.0 (+2.9)

SAN (ViT-L) COCO-Stuff No 12.6 19.9 32.0 56.3
SAN (ViT-L) + TFM2 COCO-Stuff No 16.2(+3.6) 22.0(+2.1) 37.2(+5.2) 60.7(+4.4)

Table 1. The mIoU comparison results of applying 32-shot TFM2 on multiple OVSS models with current mainstream OVSS methods.

an averaged result is computed and re-scaled to align with
the range of the original logits. Analogous to the Eq. (4),
the TFM2 refines semantic segmentation result as:

Ŝfinal = L̂⊤
final × M̂I (18)

In summary, we propose TFM2, which starts from basic
Mask Cache and is refined by three modules. TFM2 pro-
vides the reference mask classification logits by its refined
Cache. The original model mask classification logits L̂origin

will be fused with TFM2 mask classification logits L̂cache by
Eq. (17). The final semantic segmentation will benefit from
the enhanced mask classification result by Eq. (18).

4. Evaluation
4.1. Dataset and Experimental Settings

We evaluate TFM2 on four datasets frequently employed
in open-vocabulary semantic segmentation research [57–

59]. We use the ADE20k dataset [74], a popular choice
for scene classification tasks, in two variants: one with
150 classes (ADE20k-150) and the other with 847 classes
(ADE20k-847). Additionally, we utilize the Pascal Context
dataset, specifically its PC-59 and PC-459 versions [40],
which expand the Pascal VOC 2010 dataset by adding an
extra 59 and 459 classes, respectively. Please note that we
choose not to include Pascal VOC [17] in our evaluation due
to its high label context similarity [57, 58] with the COCO-
Stuff dataset, making it not ideal for assessing the effective-
ness of open-vocabulary semantic segmentation models.

The baseline OVSS models are trained on either COCO
Stuff [7] or COCO Panoptic [33] datasets, following stan-
dard practice [13,32,57–59]. We set the N = 847, 459, 150,
and 59, which are equal to the number of mask classes for
four datasets. For the few-shot OVSS scenarios, we provide
TFM2 with K = 2, 4, 8, 16, and 32 shot masks derived from
the training splits of the four datasets. We set the C ′ = 1

2C.



TFM2 will be applied to a range of OVSS methods with
various backbones. We employ the mean of class-wise in-
tersection over union (mIoU) as our performance metric of
choice to evaluate the semantic segmentation accuracy.

4.2. Implementation Details

We select SAN [57] with two Vision-Transformer back-
bones ViT-B and ViT-L [16]. We also select SimSeg [59]
with a ResNet101 [24] backbone, and OVSeg [32] with a
Swin-Transformer [37] backbone Swin-B . We employ the
officially released pre-trained models for each baseline. We
carry out all experiments using the TFM2, implemented
in PyTorch [42] on a single NVIDIA V100 GPU, with
λ1 = 0.7, λ2 = 0.1, and λ3 = 0.5. For the ADE20k-847
and PC-459 datasets, we retain all reference masks (with-
out applying the Dynamic Filter module) if the shot number
exceeds the mask number. Because some classes only have
one mask, or their mask numbers are less than the shot num-
ber. The codes will be released upon the paper’s decision.

4.3. Performance Analysis

Fig. 3 illustrates the performance of various OVSS meth-
ods with TFM2 across four datasets. Our TFM2 consis-
tently improves mIoU with few-shot masks across back-
bones. Performance on ADE20K-847 and PC-459 is im-
pacted by ensembling complexity and dataset characteris-
tics. SimSeg and OVSeg achieve their best results by fusing
logits from trained models with those from frozen Vision-
and-Language Pre-trained (VLP) models like CLIP. Adding
TFM2 introduces additional complexity, and for simplic-
ity, we used an averaged fusion. More advanced strategies
might improve results, but our focus was to demonstrate
the viability of TFM2. ADE20K-847 and PC-459 have
more classes but limited images per class, affecting refer-
ence mask availability. This limited reference mask avail-
ability, especially in larger-shot settings, affected its perfor-
mance. Despite using all available reference masks, some
classes still lacked sufficient data. Lastly, TFM2 performs
better on SAN than on SimSeg and OVSeg, as the latters
already use ensembling with fine-tuned and frozen CLIP
predictions. Tuning fusion weights for these varied logits
across datasets is complex, so we kept the fusion simple by
applying TFM2 only to model logits.

We also compare 32-shot TFM2 with multiple OVSS
methods in Tab. 1 , with additional shot number results
in the supplementary material. TFM2 improves perfor-
mance as more data per class becomes available, as demon-
strated with 16-shot and 32-shot settings. Even in more lim-
ited settings, such as 2-shot and 4-shot, TFM2 consistently
outperforms other methods across multiple backbones and
datasets. Notably, SAN with TFM2 achieves significant
gains in a training-free fashion.

TFM2 could be improved with fine-tuning. Fine-tuning

Module Name Shot Number
Mask Cache Dynamic Filter Channel Reduction Feature Alignment 2 4 8 16 32

✓ 27.7 28.3 29.4 29.7 29.9
✓ ✓ 27.7 28.3 29.4 30.4 30.6
✓ ✓ ✓ 28.5 29.9 30.5 31.4 31.5
✓ ✓ ✓ ✓ 29.0 30.6 31.0 31.9 32.1

Table 2. The quantitative ablation table for the four versions:
“Mask Cache”, “Mask Cache + Dynamic Filter”, “Mask Cache
+ Dynamic Filter”, and TFM2 with SAN(ViT-B) on ADE-150.

2 4 8 16 32

Number of Shots (Masks per Class)

26

28

30

32
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Mask Cache + Dynamic Filter + Channel Reduction

TFM2

SAN ViT-B

Figure 4. Ablation figure of different modules with SAN(ViT-B)
on ADE-150 dataset. We vary the number of K-shots and visual-
ize the trends of different combinations.

the last layer improved mIoU by 0.7 on ADE20k-150 (SAN
with ViT-L). Using few-shot samples for fine-tuning contra-
dicts the training-free principle, so fine-tuned results are ex-
cluded. Consequently, we have chosen not to include fine-
tuned experimental results. All presented results adhere to
a training-free methodology. Incorporating TFM2 does not
impact inference speed, as it only involves lightweight oper-
ations. Remarkably, the speeds remain unchanged from the
original methods, as TFM2 performs only two lightweight
operations during inference: (1) calculating similarity with
the cache keys and (2) multiplying scores by the cache val-
ues, both of which are linear time operations. Mask Cache
construction is a one-time setup, offering reusable benefits
with minimal overhead. We view this as an upfront invest-
ment, given the reusability and benefits it offers.

4.4. Ablation Study

We conduct an ablation study on TFM2 to analyze the
impacts of the designed key-value mask cache and three
modules. We select SAN with a ViT-B backbone as the
OVSS baseline and consider four versions of TFM2. The
first version, termed “Mask Cache”, integrates the mask
cache logits and the original model logits as described in
Sec. 3.1. The second version, “Mask Cache + Dynamic Fil-
ter”, includes the Mask Cache with an optimized key us-
ing Dynamic Filter, as detailed in Sec. 3.2. The third ver-
sion, “Mask Cache + Dynamic Filter + Channel Reduction”,
comprises the Mask Cache with Dynamic Filter and Chan-
nel Reduction keys, as in Sec. 3.3. The final version using
all modules is TFM2, as defined in Sec. 3.4. All versions
utilize Eq. (17) to fuse mask proposal classification logits



Image SAN SAN + TFM2 GT Mask

Figure 5. Qualitative examples showing TFM2’s role in improving
mask proposal classification on ADE20k-150. The second col-
umn shows SAN inference without TFM2. We see that SAN +
TFM2 (third column) can improve semantic segmentation when
compared with the ground truth (fourth column). Please note that
the color palette is the same for all mask classes.

with original logits and subsequently generate the final se-
mantic segmentation results, as outlined in Eq. (4).

As depicted in Tab. 2 and Fig. 4, the Mask Cache can
enhance the performance of the OVSS method for K = 2
to 32 shots. In the settings of larger shots, the performance
can be further improved by Dynamic Filter. After applying
Channel Reduction, the third version consistently outper-
forms the second one. Ultimately, with the aid of designed
Feature Alignment, TFM2 achieves the best results.

4.5. Qualitative Results

In Fig. 5, we show several mask predictions from the
SAN and SAN with TFM2 on the ADE20K-150 dataset.
These figures suggest that TFM2 may assist SAN in cor-
rectly classifying some mask proposals, which further en-
hances the semantic segmentation performance. Each row
contains the original image, SAN output, SAN with TFM2,
and the ground truth. If we look at the fourth row, incorpo-
rating TFM2 enables the segmentation of the shower and the
shower curtain, a task that SAN alone could not do. Simi-
larly, in the last row, we see a real-world scene of an expo
booth that SAN has predominantly segmented as a single
object. Including TFM2 during inference time allows for
segmenting fine-grained, smaller objects, potentially mak-
ing it more applicable to real-world scenarios.

5. Discussion

The primary focus of our research is on the mask pro-
posal classification aspect. This is a critical component in
semantic segmentation, as it involves identifying and clas-
sifying regions within an image that correspond to differ-
ent objects. For the mask creation, a potential solution that
does not require additional training is using Segment Any-
thing [28]. This tool can be employed to refine the masks, a
process that can significantly enhance the segmentation re-
sults. By refining the masks, we can achieve more accurate
and precise segmentation. We conducted additional exper-
iments to analyze the robustness of TFM2 and found that
its performance is highly sensitive to the quality of the few-
shot masks when the number of shots is small (k = 2). If the
provided masks are not representative, they can negatively
impact the constructed cache. However, as k increases, the
performance stabilizes even with random sampling.

The performance of TFM2 could potentially be im-
proved by introducing trainable versions. The current ver-
sion of TFM2 is effective but operates on a fixed set of pa-
rameters from the trained OVSS models. By making these
parameters trainable, we can allow the method to adapt to
the specific characteristics of the data. This adaptability
could improve performance, as the method would be better
equipped to handle the unique challenges presented by dif-
ferent datasets. However, introducing trainable parameters
introduces additional complexity. A different approach may
be necessary for datasets with a highly skewed distribution,
such as PC-459. These datasets present unique challenges,
as the uneven data distribution can make it difficult for tra-
ditional methods to perform effectively.

6. Conclusion

In this paper, we proposed TFM2 for enhancing the
OVSS models with few-shot masks. To achieve that, we
first propose a way to build up the mask cache, which
stores the representative mask visual features as the key
of the mask cache. Based on that, we also employ three
modules: Dynamic Filter, Channel Reduction, and Feature
Alignment to further refine the key and value of cache as
the final adapter. Comprehensive experiments and results
show that TFM2 can surpass the performances of the orig-
inal OVSS with only few-shot masks. Besides that, TFM2

is not limited to any specific methods or backbones, which
demonstrates the general ability to be applied to different
OVSS methods. It is close to the real-world application
scenario that the trained OVSS model is required to seg-
ment new classes with limited reference samples. We hope
this study builds up new baselines for the few-shot open-
vocabulary semantic segmentation task and it can inspire
future research on improving the OVSS methods with few-
shot data in an efficient way.
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